Quantity |
Dimension |
Alternatives |
Definition/Notes |
A: |
Abbé number | Constringence | V-number |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
Absorbed radiation dose |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
Absorbed dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
Acceleration, angular |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
Acceleration | Deceleration |
m.s-2 |
|
[ΔVelocity]/[ΔTime] |
Acoustic impedance / resistance / reactance |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[Pressure]/[Volume flow rate] |
Acoustic impedance, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
Acoustic conductance, specific |
kg-1.m2.s |
reyl-1 |
Inverse of s.acu. impedance. Also s.acu. susceptance |
Action |
kg.m2.s-1 |
J.s |
[Energy]*[Time], [Moment of motion]*[Distance] |
Activity of a radioactive source |
s-1 |
Bq (becquerel) |
[Counts]/[Time] |
Activity, katalytic |
mol.s-1 |
katal |
[ΔQuantity]/[Time]. Same as molar production rate |
Activity, transactions rate |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
Admittance, inductive |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Inductive impedance] |
Admittance, of a circuit |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Circuit impedance] |
Advection velocity |
m.s-1 |
m/s |
In porous media; actual progress along pressure gradient |
Albedo, of a surface |
1 |
Dimensionless |
[Reflected elmag power]/[Incident elmag power] |
Amplification | Attenuation (generic) |
1 |
usually in dB |
[Quantity(p)]/[Quantity(p')], with p being some parameter |
Angular acceleration |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
Angular moment of inertia |
kg.m2 |
|
[Mass]*[Distance2] |
Angular moment of motion |
kg.m2.s-1 |
J.s |
[Moment of motion]*[Distance]. Like [action] |
Angular velocity |
s-1 |
rad.s-1 |
[ΔPlane angle]/[ΔTime] |
Annealing point |
K |
|
Temperature at which viscosity drops below 1012 Pa.s |
Area |
m2 |
|
[Distance]*[Distance] |
Area growth rate |
m2.s-1 |
|
[ΔArea]/[Time] |
Asset | Wealth |
cur |
currency |
Economy and finance |
Atomic number |
1 |
Dimensionless |
Number of protons in an atomic nucleus |
Atomic weight | Relative atomic mass |
au |
atomic units |
Average over a typical isotopic composition |
Attenuation | Amplification (generic) |
1 |
usually in dB |
[Quantity(p)]/[Quantity(p')], with p being some parameter |
Attenuation / amplification over a distance |
m-1 |
dB/m |
[Attenuation]/[Distance]. Mostly in acoustic and electronics |
Attenuation / amplification over a period |
s-1 |
dB/s |
[Attenuation]/[Time]. Mostly in acoustic and electronics |
B: |
Bandwidth |
s-1 |
Hz |
[ΔFrequency] |
Baud rate | Information flux |
bit.s-1 |
baud |
[Information]/[Time] |
Bond duration |
s |
year |
Economy and finance |
Bulk modulus |
kg.m-1.s-2 |
N.m-2, Pa |
([ΔVolume]/[Volume])/[Pressure]. Inverse of compressibility |
C: |
Capacitance, electric |
kg-1.m-2.s4.A2 |
C.V-1, F (farad) |
[Charge]/[ΔPotential] |
Capacitive reactance |
kg.m2.s-3.A-2 |
Ω (ohm) |
1/(i[Angular frequency].[Capacitance]) |
Capacitive susceptance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Capacitive reactance] |
Cash flow |
cur.s-1 |
currency/year |
[Value]/[ΔTime]. Economy and finance |
Circulation |
m2.s-1 |
J.s.kg-1 |
[Angular moment]/[Mass], [Velocity]*[Loop length] |
Characteristic impedance |
kg.m2.s-3.A-2 |
V.A-1, Ω, ohm |
√([Mag.Permeability]/[El.Permittivity]) |
Charge, electric |
s .A |
C (coulomb) |
[Current]*[Time] |
Charge, magnetic (bound) |
m-2.A |
|
- ∇.[Magnetization] , -Divergence of magnetization |
Charge, quantum |
1 |
Dimensionless |
[Charge]/[Elementary charge quantum] |
Charge, molecular/ionic, quantum |
1 |
Dimensionless |
[Charge of a molecule or ion]/[Elementary charge quantum] |
Charge density |
m-3.s.A |
C.m-3 |
[Charge]/[Volume] |
Charge/mass ratio | Specific charge |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass] |
Charge, molar |
s.A.mol-1 |
C.mol-1 |
[Charge]/[Quantity] |
Chemical potential, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[ΔInternalEnergy]/[ΔQuantity] |
Circuit admittance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Circuit impedance] |
Circuit impedance |
kg.m2.s-3.A-2 |
Ω (ohm) |
|
Circulation / velocity of money |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
Circumference | Perimeter |
m |
|
|
Collision cross section | Cross section |
m2 |
|
[Distance]*[Distance] |
Compressibility |
kg-1.m.s2 |
Pa-1 |
[Pressure]/([ΔVolume]/[Volume]). Inverse of bulk modulus |
Compression |
kg.m-1.s-2 |
N.m-2, Pa (pascal) |
[Force]/[Area]. Same as pressure |
Compression factor of a real gas |
1 |
Dimensionless |
pV/(nRT). For ideal gas equals 1; temperature dependent |
Compressive strength |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Like pressure |
Concentration, molar |
m-3.mol |
|
[Quantity]/[Volume]. Same as molar density |
Concentration gradient, molar |
m-4.mol |
|
[Molarity]/[Distance]. Same as molarity gradient |
Concentration ratio, molar |
1 |
Dimensionless |
[Partial quantity]/[Total quantity] |
Concentration ratio, by mass |
1 |
Dimensionless |
[Partial mass]/[Total mass] |
Concentration ratio, by volume |
1 |
Dimensionless |
[Partial volume]/[Total volume]. . |
Concentration, by weight (obsolete) |
1 |
Dimensionless |
[Partial mass]/[Total mass]. Obsolete: use by mass |
Conductance, electric |
kg-1.m-2.s3.A2 |
A.V-1, S (siemens) |
1/[Resistance] |
Conductivity, electric |
kg-1.m-3.s3.A2 |
S.m-1 |
1/[Resistivity] |
Conductivity, hydraulic |
m.s-1 |
m/s |
Used for porous media |
Conductivity, molar |
kg-1.s3.A2.mol-1 |
S.m2.mol-1 |
[El.conductivity]/[Concentration] |
Conductivity, thermal |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]) |
Constringence | Abbé number | V-number |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
Convergence |
m-1 |
dioptry |
in optics, but not only |
Cosmological constant Λ |
m-2 |
|
Present in Einstein's equation |
Cosmological expansion rate |
s-1 |
km/s/Mpc |
[Velocity]/[Distance]. Mpc stands for Megaparsec |
Count of events/instances |
1 |
|
This covers all kinds of enumerations |
Count rate |
s-1 |
|
[Counts]/[Time] |
Couple |
kg.m2.s-2 |
N.m |
2*[Force]*[Distance] for two non-aligned opposing forces |
Critical angle of repose |
rad |
or degree |
Steepest angle of a slope before a slide |
Cross section |
m2 |
|
[Distance]*[Distance] |
Cryoscopic constant |
kg.mol-1.K |
K/(mol/kg) |
[ΔTemperature]/[Molality] |
Current, electric |
A |
A (ampere) |
|
Current density, electric |
m-2.A |
|
[Current]/[Area]. Same as current intensity |
Current intensity, electric |
m-2.A |
|
[Current]/[Area]. Same as current density |
Current noise, variance nJ2 |
s.A2 |
A2/Hz |
[Current]2/[Bandwidth] |
Curvature |
m-1 |
|
1/[Curvature radius] |
Curvature radius |
m |
|
of a line in plane/space or surface in space |
D: |
D'Alembert operator | D'Alembertian |
m-2 |
|
(1/c2)∂2/∂t2 - ∂2/∂x2 - ∂2/∂y2 - ∂2/∂z2 |
Debt | Liability |
cur |
currency |
Economy and finance |
Debt/GDP ratio |
s |
year |
[Debt]/[Earnings]. Economy and finance |
Deceleration | Acceleration |
m.s-2 |
|
[ΔVelocity]/[ΔTime] |
Deceleration, angular |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
Density of electric charge |
m-3.s.A |
C.m-3 |
[Charge]/[Volume] |
Density of electric current |
m-2.A |
|
[Current]/[Area]. Same as current intensity |
Density of energy |
kg.m-1.s-2 |
J.m-3 |
[Energy]/[Volume] |
Density of mass |
kg.m-3 |
|
[Mass]/[Volume]. Same as specific density |
Density of mass, gradient of |
kg.m-4 |
|
[Mass density]/[Distance]. Same as specific density gradient |
Density of particles |
m-3 |
|
[Count]/[Volume]. Obsolete: number density |
Density of substance |
m-3.mol |
|
[Quantity]/[Volume]. Same as molar concentration |
Derivative with respect to time |
s-1 |
|
d/dt, ∂/∂t |
Derivative with respect to a length |
m-1 |
|
d/dr, ∂/∂r, r = x | y | z |
Dielectric constant | Relative permittivity |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum] |
Dielectric strength/rigidity | Electric strength |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
Diffusion coefficient |
m2.s-1 |
|
[Distance]2/[Time] |
Diffusivity, thermal |
m2.s-1 |
|
([∂Temperatute]/[∂Time])/[∇2Temperature]. |
Dipole moment, electric |
m.s.A |
C.m |
[Charge]*[Distance] |
Dipole moment, magnetic |
m2.A |
J.T-1 |
[Current]*[Area] |
Dispersive power |
1 |
Dimensionless |
Ratio of differences of refractive indices |
Dispersivity quotient |
m-1 |
|
[ΔRefractive index]/[ΔWavelength] |
Displacement, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
Displacement four-tensor (relativistic Dμν) |
m-1.A |
|
Like magnetic intensity |
Distance |
m |
|
in all Euclidean n-dimensional spaces |
Dose of absorbed radiation |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
Dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
Drift speed |
m.s-1 |
|
Steady-state speed of an object. . |
Duration |
s |
s (second) |
|
Dynamic viscosity |
kg.m-1.s-1 |
Pa.s |
([Force]/[Area])/[ΔVelocity] |
E: |
Earnings | Income rate |
cur.s-1 |
currency/year |
[Value]/[Time period]. Economy and finance |
Ebullioscopic constant |
kg.mol-1.K |
K/(mol/kg) |
[ΔTemperature]/[Molality] |
Electric capacitance |
kg-1.m-2.s4.A2 |
C.V-1, F (farad) |
[Charge]/[ΔPotential] |
Electric charge |
s .A |
C (coulomb) |
[Current]*[Time] |
Electric conductance |
kg-1.m-2.s3.A2 |
A.V-1, S (siemens) |
[Current]/[ΔPotential]. Inverse of resistance |
Electric conductivity |
kg-1.m-3.s3.A2 |
S.m-1 |
1/[Resistivity] |
Electric conductivity, molar |
kg-1.s3.A2.mol-1 |
S.m2.mol-1 |
[El.conductivity]/[Concentration] |
Electric current |
A |
A (ampere) |
|
Electric dipole moment |
m.s.A |
C.m |
[Charge]*[Distance] |
Electric displacement |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
Electric field strength | Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
Electric field gradient |
kg.s-3.A-1 |
V.m-2 |
[ΔEl.field strength]/[Distance] |
Electric flux density | Electric induction |
m-2.s.A |
C.m-2 |
[Charge]/[Area] |
Electric inductance |
kg.m2.s-2.A-2 |
V.s.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt] |
Electric induction |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. More properly electric flux density |
Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. More properly electric field strength |
Electric permittivity |
kg-1.m-3.s4.A2 |
F.m-1 |
[El.flux density]/[El.field strength] |
Electric permittivity, relative |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Same as dielectric constant |
Electric polarization |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Like electric flux density |
Electric potential |
kg.m2.s-3.A-1 |
W.A-1, J.C-1, V (volt) |
[Power]/[Current], [Energy]/[Charge] |
Electric quadrupole moment |
m2.s.A |
C.m2 |
[Electric dipole]*[Distance], [Electric charge]*[Distance2] |
Electric resistance |
kg.m2.s-3.A-2 |
V.A-1, Ω (ohm) |
[ΔPotential]/[Current] |
Electric resistivity |
kg.m3.s-3.A-2 |
Ω.m |
([Resistance]*[Length])/[Area] |
Electric strength | Dielectric strength |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. . |
Electromagnetic field tensor (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
Electromagnetic displacement (relat. Dμν) |
m-1.A |
|
Like magnetic intensity |
Electromagnetic four-current (relativistic Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
Electromagnetic four-potential (relativistic Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
Electromotive force (emf) |
kg.m2.s-3.A-1 |
V |
[ΔPotential] |
Electron affinity (always molar) |
kg.m2.s-2.mol-1 |
J.mol-1 |
Energy released binding an electron |
Electronegativity, Pauling χ |
1 |
Dimensionless |
Relative tendency of an atom to attract electrons; χ(H)=2.20. |
Electrostriction coefficient |
kg-2.m-2.s6.A2 |
m2.V-2 |
([ΔVolume]/[Volume])/[Electric field strength]2 |
Emittance, luminous |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area]. Same as luminous exitance |
Energy |
kg.m2.s-2 |
N.m, J (joule) |
[Force]*[Distance], [Power]*[Time] |
Energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
Energy, specific |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
Energy density |
kg.m-1.s-2 |
J.m-3 |
[Energy]/[Volume] |
Energy flux | Power |
kg.m2.s-3 |
J.s-1, W (watt) |
[ΔEnergy]/[ΔTime] |
Enthalpy |
kg.m2.s-2 |
J |
Like energy and heat |
Enthalpy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Enthalpy]/[Quantity]. Like molar heat |
Enthalpy, specific |
m2.s-2 |
J.kg-1 |
[Enthalpy]/[Mass]. Like specific heat |
Entropy |
kg.m2.s-2.K-1 |
J.K-1 |
[ΔHeat]/[Temperature] |
Entropy, molar |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Entropy]/[Quantity] |
Entropy, specific |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Entropy]/[Mass] |
Evolution rate, log-scale |
s-1 |
|
d{ln(Q)}/dt = (dQ/dt)/Q. Same as relative evolution rate |
Expansion coefficient, thermal |
K-1 |
|
([ΔLength]/[Length])/[Temperature] |
Expansion rate, cosmological |
s-1 |
km/s/Mpc |
[Velocity]/[Distance]. Mpc stands for Megaparsec |
Expectation frequency |
s-1 |
|
[Counts]/[Time]. Like count rate |
Exposure |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass]. Used for ionising radiations |
Extinction coefficient |
m-1 |
dB/m |
[Ratio]/m. Used mostly for radiation |
F: |
Field tensor, electromagnetic (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
Fire point |
K |
|
Temperature at which ignited vapour keeps burning |
Flash point |
K |
|
Temperature at which vapour can be kept burning |
Flow |
cur.s-1 |
currency/year |
[ΔValue]/[ΔTime]. Economy and finance: time derivative |
Flow rate, of mass | Mass production rate |
kg.s-1 |
|
[ΔMass]/[Time]. For example, through a pipe |
Flow rate, of volume |
m3.s-1 |
|
[ΔVolume]/[Time]. For example, through a pipe |
Force |
kg.m.s-2 |
N (newton) |
[Mass]*[Acceleration] |
Force, thermodynamic |
kg.m.s-2.mol-1 |
N/mol |
[ΔChemical potential]/[Distance] |
Four-current (relativistic Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
Four-potential (relativistic Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
Four-tensor elmag displacement (relat. Dμν) |
m-1.A |
|
Like magnetic intensity |
Four-tensor elmag field (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
Free energy |
kg.m2.s-2 |
J |
Also Helmholtz function. Like energy |
Free energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free energy]/[Quantity]. Like Helmholtz function |
Free energy, specific |
m2.s-2 |
J.kg-1 |
[Free energy]/[Mass]. Like specific Helmholtz function |
Free enthalpy |
kg.m2.s-2 |
J |
Also Gibbs function. Like energy |
Free enthalpy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free enthalpy]/[Quantity]. Like molar Gibbs function |
Free enthalpy, specific |
m2.s-2 |
J.kg-1 |
[Free enthalpy]/[Mass]. Like specific Gibbs function |
Frequency of events |
s-1 |
|
[Counts]/[Time] |
Frequency of waves |
s-1 |
Hz |
hertz |
Frequency drift rate |
s-2 |
Hz.s-1 |
[ΔFrequency]/[Time] |
Friction |
kg.m.s-2 |
N |
Tangential force between two moving surfaces |
Friction coefficient |
1 |
Dimensionless |
[Tangential force]/[Normal force] |
Fugacity |
kg.m-1.s-2 |
Pa |
Effective pressure in real gases |
G: |
Gain of a device |
1 |
Dimensionless |
[Output]/[Input], like-quantities ratio. Often in dB |
GDP Gross domestic product |
cur.s-1 |
currency/year |
[Earnings]. Economy and financee: of an administrative region |
g-factor of a particle |
1 |
Dimensionless |
[Magnetic moment]/([Spin].[Bohr magneton]) |
Gradient, of electric field |
kg.s-3.A-1 |
V.m-2 |
[ΔEl.field strength]/[Distance] |
Gradient, of magnetic field |
kg.m-1.s-2.A-1 |
T.m-1 |
[ΔMag.flux density]/[Distance] |
Gradient, of mass density |
kg.m-4 |
|
[Mass density]/[Distance]. Same as specific density gradient |
Gradient, of pressure |
kg.m-2.s-2 |
N.m-3, Pa/m |
[Pressure]/[Distance] |
Gradient, thermal |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as temperature gradient |
Gravitational constant G |
kg-1.m3.s-2 |
|
[Force]*[Distance]2/[Mass]2. Appears in Newton's equation |
Gravitational field intensity | Gravity |
m.s-2 |
|
[Force]/[Mass], [Acceleration] |
Gravitational field potential |
m2.s-2 |
|
[Energy]/[Mass]. |
Gravity | Gravitational field intensity |
m.s-2 |
|
[Force]/[Mass], [Acceleration] |
Growth rate, relative |
s-1 |
|
[Relative variation]/[Time] |
Growth rate, linear |
m.s-1 |
|
[ΔLength]/[Time] |
Growth rate, of area/surface |
m2.s-1 |
|
[ΔArea]/[Time] |
Growth rate, of volume |
m3.s-1 |
|
[ΔVolume]/[Time] |
Gyromagnetic ratio |
kg-1.s.A |
Hz.T-1 |
[Mag.moment]/[Angular moment of motion] |
H: |
Half life |
s |
|
of a non-conservative / decaying quantity |
Hamiltonian |
kg.m2.s-2 |
J |
[Force]*[Distance], [Power]*[Time]. Like energy |
Hardness |
kg.m-1.s-2 |
N.m-2 |
[Force]/[Area]. Same as pressure |
Heat |
kg.m2.s-2 |
J |
Like energy |
Heat, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Heat]/[Quantity] |
Heat, specific |
m2.s-2 |
J.kg-1 |
[Heat]/[Mass] |
Heat capacity |
kg.m2.s-2.K-1 |
J.K-1 |
[ΔHeat]/[ΔTemperature] |
Heat capacity, molar |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Heat capacity]/[Quantity] |
Heat capacity, specific |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Heat capacity]/[Mass] |
Heat conductivity | Thermal conductivity |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]) |
Heat flux |
kg.m2.s-3 |
J.s, W |
[ΔHeat]/[ΔTime]. Like power |
Heat flux density |
kg.s-3 |
W.m-2 |
[Heat flux]/[Area]. Same as irradiance |
Heat of fusion/evaporation, specific |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
Heat of fusion | evaporation, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
Hydraulic conductivity |
m.s-1 |
m/s |
Used for porous media |
Hydraulic permeability |
m2 |
1 darcy = 10-12 m2 |
[Velocity]*[Viscosity]/[Pressure gradient], in porous media |
I: |
Illuminance |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area] |
Impact resistance |
kg.s-2 |
J.m-2 |
[Energy]/[Area] |
Impedance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. resistance / reactance |
Impedance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
Impedance, characteristic, electric |
kg.m2.s-3.A-2 |
V.A-1, Ω, ohm |
√([Mag.Permeability]/[El.Permittivity]) |
Impedance, inductive |
kg.m2.s-3.A-2 |
Ω (ohm) |
i[Angular frequency].[Inductance] |
Impedance, of a circuit |
kg.m2.s-3.A-2 |
Ω (ohm) |
|
Impulse |
kg.m.s-1 |
|
[ΔMoment of motion], [Force]*[ΔTime], [Mass]*[ΔVelocity] |
Income rate | Earnings |
cur.s-1 |
currency/year |
[Value]/[Time period]. Economy and finance |
Inductance |
kg.m2.s-2.A-2 |
V.s.A-1, Wb.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] |
Induction, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
Inductive admittance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Inductive impedance] |
Inductive impedance |
kg.m2.s-3.A-2 |
Ω (ohm) |
i[Angular frequency].[Inductance] |
Information |
bit-1 |
bit |
One bit is the elementary information quantum |
Information flux | Baud rate |
bit.s-1 |
baud |
[Information]/[Time] |
Intensity of electric current |
m-2.A |
|
[Current]/[Area]. Same as current density |
Interest |
1 |
% |
[ΔWealth]/[Wealth]. Economy and finance |
Interest rate |
s-1 |
%/year |
[Interest]/[Time period]. Economy and finance |
Internal energy |
kg.m2.s-2 |
J |
Like energy and heat |
Internal energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Internal energy]/[Quantity]. Like molar heat |
Internal energy, specific |
m2.s-2 |
J.kg-1 |
[Internal energy]/[Mass]. Like specific heat |
Ion mobility |
kg-1.m-1.s2.A |
m2.s-1.V-1 |
[Velocity]/[Electric field strength] . |
Ionic force (strength) |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
Ionic quantum charge |
1 |
Dimensionless |
[Ion charge]/[Elementary charge quantum] |
Ionic strength (force) |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
Ionization energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
Energy to ionize a molecule/atom |
Irradiance |
kg.s-3 |
W.m-2 |
[Heat flux]/[Area]. Same as heat flux density |
J: |
Joule-Thomson coefficient |
kg-1.m.s2.K |
K.Pa-1 |
[ΔTemperature]/[ΔPressure] |
K: |
Katalytic activity |
mol.s-1 |
katal |
[ΔQuantity]/[Time]. Same as molar production rate |
Kinematic viscosity |
m2.s-1 |
|
[Dynamic viscosity]/[Density] |
K-space vector | Reciprocal space position |
m-1 |
|
|
L: |
Lagrangian |
kg.m2.s-2 |
J |
[Force]*[Distance], [Power]*[Time]. Like energy |
Laplace operator | Laplacian |
m-2 |
|
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 |
Length |
m |
m (meter) |
|
Liability | Debt |
cur |
currency |
Economy and finance |
Linear stiffness |
kg.s-2 |
N.m-1 |
[Force]/[Displacement]. ... of a structure |
Logarithmic ratio logb(A/A') in any base b |
1 |
|
Applicable to any ratio of commensurable quantities |
Logarithmic ratio ln(A/A') |
1 |
Np |
Neper. Uses natural logarithm |
Logarithmic ratio Log(P/P')/10 |
1 |
dB (decibel) |
Uses base-10 logarithm. Aplies only to power P |
Logarithmic ratio Log(X/X')/20 |
1 |
dB (decibel) |
Aplies to voltages (X=V) and currents (X=I) |
Logarithmic scale differential |
1 |
Dimensionless |
dQ/Q, d{ln(Q)}, for any quantity Q. Also relative differential |
Logarithmic scale probability density |
1 |
1/Np |
[Probability]/[Natural-logarithmic ratio] |
Loss of a device |
1 |
Dimensionless |
[Output]/[Input], like-quantities ratio. Often in dB |
Luminance |
cd.m-2 |
|
[Luminosity]/[Area] |
Luminosity |
cd |
cd (candle) |
Same as luminous intensity |
Luminous coefficient |
1 |
Dimensionless |
[Luminous efficacy]/[683 lm/W]. Same as luminous efficiency |
Luminous efficacy |
cd.sr.kg-1.m-1.s3 |
lm/W |
[Luminous flux]/[Power] |
Luminous efficiency |
1 |
Dimensionless |
[Luminous efficacy]/[683 lm/W]. Same as luminous coefficient |
Luminous emittance |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area]. Same as luminous exitance |
Luminous energy |
cd.sr.s |
lm.s |
[Luminous flux]*[Time]. Known as talbot |
Luminous flux |
cd.sr |
lm (lumen) |
[Luminosity]*[Solid angle]. Same as luminous power |
Luminous intensity |
cd |
cd (candle) |
Same as luminosity |
Luminous power |
cd.sr |
lm (lumen) |
[Luminosity]*[Solid angle]. Same as luminous flux |
M: |
Magnetic charge (bound) |
m-2.A |
|
- ∇.[Magnetization] , -Divergence of magnetization |
Magnetic dipole moment |
m2.A |
J.T-1 |
[Current]*[Area]. Same as magnetic moment |
Magnetic field gradient |
kg.m-1.s-2.A-1 |
T.m-1 |
[ΔMag.flux density]/[Distance] |
Magnetic field strength | Magnetic intensity |
m-1.A |
|
[Current]/[Distance] |
Magnetic flux |
kg.m2.s-2.A-1 |
V.s, W.s.A-1, Wb (weber) |
[ΔPotential]*[Time], [Power]/[dCurrent/dt] |
Magnetic flux density | Magnetic induction |
kg.s-2.A-1 |
Wb.m-2, T (tesla) |
[Mag.flux]/[Area] |
Magnetic induction |
kg.s-2.A-1 |
Wb.m-2, T (tesla) |
[Mag.flux]/[Area]. More properly magnetic flux density |
Magnetic intensity |
m-1.A |
|
[Current]/[Distance]. More properly magnetic field strength |
Magnetic moment |
m2.A |
J.T-1 |
[Current]*[Area] |
Magnetic permeability |
kg.m.s-2.A-2 |
H.m-1 |
[Mag.flux density]/[Mag.field strength] |
Magnetic permeability, relative |
1 |
Dimensionless |
[Permeability]/[Permeability of vacuum] |
Magnetic quadrupole moment |
m3.A |
m.J.T-1 |
[Mag.dipole]*[Distance] |
Magnetic susceptibility |
1 |
Dimensionless |
[Relative permeability]-1 |
Magnetic vector potential |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
[Mag.flux density]*[Distance], [El.field strength]*[Time] |
Magnetization |
m-1.A |
|
[Mag.moment]/[Volume]. Like magnetic field strength |
Magnetogyric ratio |
kg.s-1.A-1 |
T.Hz-1 |
[Angular moment of motion]/[Mag.moment] |
Magnetomotive force (mmf) |
A |
|
[Current]*[Number of turns] |
Magnitude of a star |
1 |
Dimensionless |
m-m'=-100.4(S/S'), where S,S' are the luminous fluxes of two stars |
Mass |
kg |
kg (kilogram) |
|
Mass density |
kg.m-3 |
|
[Mass]/[Volume]. Same as specific density |
Mass density gradient | Specific density gradient |
kg.m-4 |
|
[Mass density]/[Distance] |
Mass concentration |
1 |
Dimensionless |
[Partial mass]/[Total mass] |
Mass flow (total) |
kg.s-1 |
kg |
[ΔMass]/[Time]. For example, through a device |
Mass production rate |
kg.s-1 |
|
[ΔMass]/[Time]. Same as mass flow |
Mass, molar |
kg.mol-1 |
|
[Mass]/[Quantity] |
Mass number of an isotope |
1 |
Dimensionless |
Number of protons+neutrons in the isotope nuclide |
Mean anomaly |
1 |
Dimensionless |
Of a body on a Kepler orbit; t.sqrt(G(M1+M2)/r3) |
Mean motion |
s-1 |
|
Of a body on a Kepler orbit; sqrt(G(M1+M2)/r3) |
Modulus of compression |
kg-1.m.s2 |
Pa-1 |
[Pressure]/([ΔVolume]/[Volume]). Same as compressibility |
Modulus of rigidity |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Same as shear modulus |
Mobility, ionic |
kg-1.m-1.s2.A |
m2.s-1.V-1 |
[Velocity]/[Electric field strength] . |
Molality (intended as concentration) |
kg-1.mol |
mol/kg |
[Quantity]/[Mass] |
Molar charge |
s.A.mol-1 |
C.mol-1 |
[Charge]/[Quantity] |
Molar concentration |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration or molarity |
Molar concentration gradient |
m-4.mol |
|
[Molarity]/[Distance]. Same as molarity gradient |
Molar concentration ratio |
1 |
Dimensionless |
[Partial quantity]/[Total quantity] |
Molar conductivity, electric |
kg-1.m-3.s3.A2.mol-1 |
S.m-1.mol-1 |
[El.conductivity]/[Concentration] |
Molar density |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
Molar energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
Molar enthalpy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Enthalpy]/[Quantity]. Like molar heat |
Molar entropy |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Entropy]/[Quantity] |
Molar free energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free energy]/[Quantity]. Also molar Helmholtz function |
Molar free enthalpy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free enthalpy]/[Quantity]. Also molar Gibbs function |
Molar heat |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Heat]/[Quantity] |
Molar heat capacity |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Heat capacity]/[Quantity] |
Molar internal energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Internal energy]/[Quantity]. Like molar heat |
Molar mass |
kg.mol-1 |
|
[Mass]/[Quantity] |
Molar particle count |
mol-1 |
|
[Count]/[Mol]. For example, the Avogadro constant |
Molar production rate |
mol.s-1 |
|
[ΔQuantity]/[Time]. |
Molar refractivity |
m3.mol-1 |
|
[(r2-1)/(r2+2)]/[Concentration], where r is the refractive index |
Molar relaxivity |
s-1.mol-1 |
|
[Relaxation rate]/[Concentration] |
Molar solubility |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
Molar volume |
m3.mol-1 |
|
[Volume]/[Quantity] |
Molarity |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration or molar density |
Molarity gradient |
m-4.mol |
|
[Molarity]/[Distance]. Same as concentration gradient |
Molecular quantum charge |
1 |
Dimensionless |
[Charge of a molecule]/[Elementary charge quantum] |
Moment of force |
kg.m2.s-2 |
N.m |
[Force]*[Distance] |
Moment of motion |
kg.m.s-1 |
|
[Mass]*[Velocity], [Mass flow]*[Distance] |
Multiple derivatives with respect to time |
s-p |
|
dp/dtp, ∂p/∂tp; for p = 1,2,3,.. |
Multiple derivatives with respect to a length |
m-p |
|
dp/drp, ∂p/∂rp; for p = 1,2,3,..., r = x | y | z |
Mutual inductance |
kg.m2.s-2.A-2 |
V.s.A-1, Wb.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] |
N: |
Nabla ( ∇ ) | div | grad | rot | curl |
m-1 |
|
Any derivative-like construct with respect to a distance |
Notch resistance |
kg.s-2 |
J.m-2 |
[Energy]/[Area] |
Number of instances / events |
1 |
|
This covers all kinds of enumerations |
Number density |
m-3 |
|
[Particles]/[Volume]. Obsolete; see particle density |
Number of turns |
1 |
|
Often used in electric engineering |
O: |
Osmotic pressure |
kg.m-1.s-2 |
Pa |
|
P: |
Particle count, molar |
mol-1 |
|
[Count]/[Mol]. For example, the Avogadro constant |
Particle density |
m-3 |
|
[Count]/[Volume]. Obsolete: number density |
P/E Price/Earnings ratio |
s |
year |
[Value]/[Earnings]. Economy and finance |
Peltier coefficient |
kg.m2.s-3.A-1 |
W.A-1, V |
[Heat flux]/[Current] |
Perimeter | Circumference |
m |
|
|
Permeability, magnetic |
kg.m.s-2.A-2 |
H.m-1 |
[Mag.flux density]/[Mag.field strength] |
Permeability, hydraulic |
m2 |
1 darcy = 10-12 m2 |
[Velocity]*[Viscosity]/[Pressure gradient], in porous media |
Permittivity, electric |
kg-1.m-3.s4.A2 |
F.m-1 |
[El.flux density]/[El.field strength] |
Permittivity, relative |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Dielectric constant |
Phase | Phase angle |
1 |
rad |
φ typically in exp(i(ωt+φ)) |
Phase drift rate |
s-1 |
rad.s-1 |
[Phase angle]/[Time] |
Pi coefficient, molar |
kg.m-1.s-2.mol-1 |
J.m-3 |
[ΔInternalEnergy]/[ΔVolume] |
Piezzoelectric coefficient |
kg.m.s-3.A-1 |
V.m-1 |
[Electric field strength]/([ΔLength]/[Length]) |
Plane angle |
1 |
rad |
|
Poisson's ratio |
1 |
Dimensionless |
[Transversal striction]/[Londitudinal elongation] |
Polarization, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Like electric flux density |
Porosity, superficial |
1 |
Dimensionless |
[Void cross section]/[Total cross section], in porous media |
Porosity, volume |
1 |
Dimensionless |
[Pores volume]/[Total volume], in porous media |
Position vector |
m |
|
in all Euclidean n-dimensional spaces |
Potential, electric |
kg.m2.s-3.A-1 |
W.A-1, J.C-1, V (volt) |
[Power]/[Current], [Energy]/[Charge] |
Power |
kg.m2.s-3 |
J.s-1, W (watt) |
[ΔEnergy]/[ΔTime]. Equivalent to energy flux |
Prandtl number |
1 |
Dimensionless |
[Kinematic viscosity]/[Thermal diffusivity] |
Propagation loss |
m-1 |
dB/m |
[Ratio]/m. Generic, usable for any quantity |
Poynting vector |
kg.s-3 |
W.m-2 |
[El.field strength]/[Mag.field strength]. Like irradiance |
Pressure |
kg.m-1.s-2 |
N.m-2, Pa (pascal) |
[Force]/[Area] |
Pressure gradient |
kg.m-2.s-2 |
N.m-3, Pa/m |
[Pressure]/[Distance] |
Price | Value |
cur |
currency |
Economy and finance |
Probability of an event |
1 |
|
Real number in a dimensionless interval [0,1] |
Probability density on log-scale |
1 |
Np-1 |
[Probability]/[Natural-logarithmic ratio] |
Purchase | Transaction value |
cur |
currency |
Economy and finance |
Q: |
Quadrupole moment, electric |
m2.s.A |
C.m2 |
[Electric dipole]*[Distance], [Electric charge]*[Distance2] |
Quadrupole moment, magnetic |
m3.A |
m.J.T-1 |
[Mag.dipole]*[Distance] |
Quantity of substance |
mol |
mol |
|
Quantum charge |
1 |
Dimensionless |
[Charge]/[Elementary charge quantum] |
Quantum charge, molecular or ionic |
1 |
Dimensionless |
[Molecule/ion charge]/[Charge quantum] |
Quotient of dispersivity |
m-1 |
|
[ΔRefractive index]/[ΔWavelength] |
R: |
Radiance |
kg.s-3.sr-1 |
W.m-2.sr-1 |
([Power]/[Area])/[Solid angle] |
Radiation dose |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
Radiation dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
Radioactivity |
s-1 |
Bq (becquerel) |
[Counts]/[Time] |
Radius of curvature |
m |
|
of a line in plane/space or surface in space |
Rotational stiffness |
kg.m2.s-2.rad-1 |
N.m.rad-1 |
[Moment of force]/[Angle]. ... of a structure |
Ratio of commensurable quantities |
1 |
Dimensionless |
Q1/Q2, with Q1 and Q2 having the same dimension |
Reactance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. impedance / resistance |
Reactance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. impedance / resistance |
Reactance, capacitive |
kg.m2.s-3.A-2 |
Ω (ohm) |
1/(i[Angular frequency].[Capacitance]) |
Reciprocal space position | K-space vector |
m-1 |
|
|
Redox potential |
kg.m2.s-3.A-1 |
V (volt) |
Same as reduction potential |
Reduction potential |
kg.m2.s-3.A-1 |
V (volt) |
Same as redox potential |
Refractive index |
1 |
Dimensionless |
Light speeds ration (in a medium)/(in vacuum) |
Refractivity, molar |
m3.mol-1 |
|
[(r2-1)/(r2+2)]/[Concentration] |
Refractivity, specific |
m3.kg-1 |
|
[(r2-1)/(r2+2)]/[Specific density], |
Relative atomic mass | Atomic weight |
au |
atomic units |
Average over a typical isotopic composition |
Relative differential |
1 |
Dimensionless |
dQ/Q, d{ln(Q)}, for any quantity Q. Also log-scale differential |
Relative evolution rate |
s-1 |
|
d{ln(Q)}/dt = (dQ/dt)/Q. Also log-scale evolution rate |
Relative permeability, magnetic |
1 |
Dimensionless |
[Permeability]/[Permeability of vacuum] |
Relative permittivity, electric |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Dielectric constant |
Relative variation |
1 |
Dimensionless |
ΔQ/Q, for any quantity Q |
Relativistic displacement four-tensor (Dμν) |
m-1.A |
|
Like magnetic intensity |
Relativistic electromagnetic field tensor (Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
Relativistic four-current (Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
Relativistic four-potential (Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
Relaxation rate |
s-1 |
|
1/[Relaxation time]. Used for returns to equilibria |
Relaxation time |
s |
|
Used for returns to equilibria |
Relaxivity, molar |
s-1.mol-1 |
|
[Relaxation rate]/[Concentration] |
Reluctance, magnetic |
kg-1.m-1.s2.A2 |
m.H-1 |
1/[Permeability] |
Resistance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. impedance / reactance |
Resistance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. impedance / reactance |
Resistance, electric |
kg.m2.s-3.A-2 |
V.A-1, Ω (ohm) |
[ΔPotential]/[Current] |
Resistance, thermal |
kg-1.m-2.s3K |
K/W |
of a device. [ΔT]/[Power]. |
Resistance to impact |
kg.s-2 |
J.m-2 |
[Energy]/[Area]. Like notch resistance |
Resistivity, electric |
kg.m3.s-3.A-2 |
Ω.m |
([Resistance]*[Length])/[Area] |
Return on asset / equity |
s-1 |
%/year |
([ΔValue]/[Value])/[Time period]. Economy and finance |
Reynolds number |
1 |
Dimensionless |
[Velocity]*[length]/[Kinematic viscosity] |
RF attenuation |
m-1 |
dB/m |
[Ratio]/m. Used mostly for radiation |
S: |
Sale | Transaction value |
cur |
currency |
Economy and finance |
Sales flow | Transactions volume |
cur.s-1 |
|
[Value]/[Time period]. Economy and Finance |
Seeback coefficient |
kg.m2.s-3.A-1.K-1 |
V.K-1 |
[ΔPotential]/[ΔTemperature]. Same as thermoelectric power |
Self-diffusion coefficient |
m2.s-1 |
|
[Distance2]/[Time] |
Settling rate |
s-1 |
typically dB/s |
[Ratio]/[ΔTime] |
Settling time |
s |
typically dB/s |
Used to describe transient phenomena |
Shear modulus |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Like Young modulus |
Softening point |
K |
|
Temperature at which hardness drops below a level |
Solid angle |
1 |
sr (steradian) |
|
Solubility, molar |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
Sonic attenuation |
m-1 |
dB/m |
[Power ratio]/m. Used in acoustics |
Specific acoustic impedance |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
Specific acoustic conductance |
kg-1.m2.s |
reyl-1 |
Also specific acoustic susceptance |
Specific charge |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass]. Charge/mass ratio |
Specific density |
kg.m-3 |
|
[Mass]/[Volume]. Same as density of mass |
Specific density gradient |
kg.m-4 |
|
[Mass density]/[Distance]. Same as mass density gradient |
Specific energy |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
Specific enthalpy |
m2.s-2 |
J.kg-1 |
[Enthalpy]/[Mass]. Like specific heat |
Specific entropy |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Entropy]/[Mass] |
Specific free energy |
m2.s-2 |
J.kg-1 |
[Free energy]/[Mass]. Also specific Helmholtz function |
Specific free enthalpy |
m2.s-2 |
J.kg-1 |
[Free enthalpy]/[Mass]. Also specific Gibbs function |
Specific heat |
m2.s-2 |
J.kg-1 |
[Heat]/[Mass] |
Specific heat capacity |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Heat capacity]/[Mass] |
Specific internal energy |
m2.s-2 |
J.kg-1 |
[Internal energy]/[Mass]. Like specific heat |
Specific refractivity |
m3.kg-1 |
|
[(r2-1)/(r2+2)]/[Specific density] |
Specific volume |
m3.kg-1 |
|
[Volume]/[Mass] |
Speed |
m.s-1 |
|
[Distance]/[Time]. Same as velocity |
Spin |
1 |
Dimensionless |
of a quantum particle |
Star magnitude |
1 |
Dimensionless |
m-m' = -100.4(S/S'), where S,S' are luminous fluxes of two stars |
Stiffness, linear |
kg.s-2 |
N.m-1 |
[Force]/[Displacement]. ... of a structure |
Stiffness, rotational |
kg.m2.s-2.rad-1 |
N.m.rad-1 |
[Moment of force]/[Angle]. ... of a structure |
Strain (mechanical) |
1 |
Dimensionless |
[ΔLength]/[Length] Relative deformation |
Strain point |
K |
|
Temperature at which viscosity drops below 1013.5 Pa.s |
Strength, compressive |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Like pressure |
Strength, dielectric |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. Same as electric strength |
Strength, electric field | Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
Strength, ionic |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
Strength, magnetic field | Magnetic intensity |
m-1.A |
|
[Current]/[Distance] |
Strength, tensile |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Same as pressure |
Superficial porosity |
1 |
Dimensionless |
[Void cross section]/[Total cross section], in porous media |
Superficial velocity |
m.s-1 |
m/s |
In porous media; as if the space was filled only by the fluid |
Surface area |
m2 |
|
[Distance]*[Distance]. Applicable to 3D bodies |
Surface density of charge |
m-2.s.A |
C.m-2 |
[Charge]/[Area] |
Surface element |
m2 |
|
[Distance]*[Distance]. Same as area |
Surface energy |
kg.s-2 |
J/m2 |
[Energy]/[Area]. Same as surface tension |
Surface growth rate |
m2.s-1 |
|
[ΔArea]/[Time] |
Surface tension |
kg.s-2 |
N/m |
[Force]/[Length]. Same as surface energy |
Susceptance, acoustic, specific |
kg-1.m2.s |
reyl-1 |
Also specific acoustic conductance |
Susceptance, capacitive |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Reactance] |
Susceptibility, magnetic |
1 |
Dimensionless |
[Relative permeability]-1 |
Stress |
kg.m-1.s-2 |
Pa, N.m-2 |
[Force]/[Area]. Same as pressure |
T: |
Temperature |
K |
K (kelvin) |
|
Temperature gradient |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as thermal gradient |
Tensile strength |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Same as pressure |
Tension |
kg.m-1.s-2 |
Pa, N.m-2 |
[Force]/[Area]. Like pressure |
Thermal conductivity |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]). Same as heat conductivity |
Thermal diffusivity |
m2.s-1 |
|
([∂Temperatute]/[∂Time])/[∇2Temperature]. |
Thermal expansion coefficient |
K-1 |
|
([ΔLength]/[Length])/[Temperature] |
Thermal gradient |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as temperature gradient |
Thermal resistance |
kg-1.m-2.s3K |
K/W |
of a device. [ΔT]/[Power]. |
Thermodynamic force |
kg.m.s-2.mol-1 |
N/mol |
[ΔChemical potential]/[Distance] |
Thermoelectric power | Thermopower |
kg.m2.s-3.A-1.K-1 |
V.K-1 |
[ΔPotential]/[ΔTemperature]. Same as Seeback coefficient |
Thickness |
m |
|
usually referred to planar structures |
Thomson coefficient |
kg.m2.s-3.A-1.K-1 |
W.K-1.A-1 |
[Heat flux]/([ΔTemperature]*[Current]) |
Time |
s |
s (second) |
|
Torque | Moment of force |
kg.m2.s-2 |
N.m |
[Force]*[Distance] |
Traction |
kg.m.s-2 |
N (newton) |
Maximum tangential force before slipping |
Traction coefficient |
1 |
Dimensionless |
[Traction]/[Weight] |
Transaction value | Sale | Purchase |
cur |
currency |
Economy and finance |
Transactions count |
1 |
Dimensionless |
Economy and finance |
Transactions rate | Activity |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
Transactions volume | Sales flow |
cur.s-1 |
|
[Value]/[Time period]. Economy and Finance |
Transmission loss |
m-1 |
dB/m |
[Ratio]/m. Generic, usable for any quantity |
U: |
V: |
V-number | Abbé number | Constringence |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
Value | Price |
cur |
currency |
Economy and finance |
van der Waals constant: a |
kg.m5.s-2.mol-2 |
Pa.m6 |
a in (p+a/V2)(V-b)=RT, where V is molar volume |
van der Waals constant: b |
m3.mol-1 |
|
b in (p+a/V2)(V-b)=RT, where V is molar volume |
Variance of current noise nJ2 |
s.A2 |
A2/Hz |
[Current]2/[Bandwidth] |
Variance of voltage noise nV2 |
kg2.m4.s-5.A-2 |
V2/Hz |
[Voltage]2/[Bandwidth] |
Vector potential, magnetic |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
[Mag.flux density]*[Distance], [El.field strength]*[Time] |
Velocity |
m.s-1 |
m/s |
[Distance]/[Time]. Same as speed |
Velocity, advection |
m.s-1 |
m/s |
In porous media; actual progress along pressure gradient |
Velocity, of money (circulation) |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
Velocity, superficial |
m.s-1 |
m/s |
In porous media; as if the space was filled only by the fluid |
Verdet constant |
kg-1.m-1.s2.A1 |
rad.m-1.T-1 |
([Angle]/[Length])/[Magnetic flux density] |
Virial coefficient: second |
m3.mol-1 |
|
B in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
Virial coefficient: third |
m6.mol-2 |
|
C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
Virial coefficient: fourth |
m9.mol-3 |
|
C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
Viscosity, dynamic |
kg.m-1.s-1 |
Pa.s |
([Force]/[Area])/[ΔVelocity] |
Viscosity, kinematic |
m2.s-1 |
|
[Dynamic viscosity]/[Density] |
Voltage | Electromotive force |
kg.m2.s-3.A-1 |
V |
[ΔPotential] |
Voltage noise, variance nV2 |
kg2.m4.s-5.A-2 |
V2/Hz |
[Voltage]2/[Bandwidth] |
Volume |
m3 |
|
[Area]*[Distance] |
Volume concentration |
1 |
Dimensionless |
[Partial volume]/[Total volume] |
Volume flow |
m3.s-1 |
|
[Volume]/[Time]. For example, through a device |
Volume growth rate |
m3.s-1 |
|
[Volume]/[Time]. For example, of a crystal |
Volume porosity |
1 |
Dimensionless |
[Pores volume]/[Total volume], in porous media |
W: |
Wave function for N particles (quantum) |
m-3N/2 |
tentative |
|ψ|2dτN is a dimensionless probability element. |
Wavelength |
m |
|
[Wave velocity]/[Frequency] |
Wavenumber |
m-1 |
|
[Number of waves]/[Distance] |
Wealth | Asset |
cur |
currency |
Economy and finance |
Work function |
kg.m2.s-2 |
J, eV |
[Energy] needed to remove an electron |
X: |
Y: |
Young modulus |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Like shear modulus |
Z: |