SI Dimensions of Physical Quantities: Alphabetic List
compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy 20022.
Stan's Library, ISSN 2421-1230, Vol.I. First release February 28, 2005. Permalink via DOI:  10.3247/SL1Phys06.003
LIST BY CATEGORY | SI Units | Convertors ! Physics Constants | Math Constants | Notes Stan's LINKS | Stan's Library | Stan's HUB
You can also download a PDF version of this document for off-line use. But keep coming back, the list is growing!

Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs Fast Tabs

Quantity Dimension Alternatives Definition/Notes
A:
Abbé number | Constringence | V-number  1  Dimensionless  VD = (nD-1)/(nF-nC) 
Absorbed radiation dose  m2.s-2 J.kg-1, Gy (gray)  [Energy]/[Mass] 
Absorbed dose rate  m2.s-3 Gy.s-1 [Absorbed dose]/[Time] 
Acceleration, angular  s-2 rad.s-2 [ΔAngular velocity]/[ΔTime] 
Acceleration | Deceleration  m.s-2   [ΔVelocity]/[ΔTime] 
Acoustic impedance / resistance / reactance  kg.m-4.s-1 Pa.s/m3, reyl/m2 [Pressure]/[Volume flow rate] 
Acoustic impedance, specific  kg.m-2.s-1 Pa.s/m , reyl [ΔPressure]*[Velocity]. Also s.acu. resistance / reactance 
Acoustic conductance, specific  kg-1.m2.s reyl-1 Inverse of s.acu. impedance. Also s.acu. susceptance 
Action  kg.m2.s-1 J.s  [Energy]*[Time], [Moment of motion]*[Distance] 
Activity of a radioactive source  s-1 Bq (becquerel)  [Counts]/[Time] 
Activity, katalytic  mol.s-1 katal  [ΔQuantity]/[Time]. Same as molar production rate 
Activity, transactions rate  s-1 1/year  [Transactions]/[Time period]. Economy and finance 
Admittance, inductive  kg-1.m-2.s3.A2 S (siemens)  1/[Inductive impedance] 
Admittance, of a circuit  kg-1.m-2.s3.A2 S (siemens)  1/[Circuit impedance] 
Advection velocity  m.s-1 m/s  In porous media; actual progress along pressure gradient 
Albedo, of a surface  1  Dimensionless  [Reflected elmag power]/[Incident elmag power] 
Amplification | Attenuation (generic)   1  usually in dB  [Quantity(p)]/[Quantity(p')], with p being some parameter 
Angular acceleration  s-2 rad.s-2 [ΔAngular velocity]/[ΔTime] 
Angular moment of inertia  kg.m2   [Mass]*[Distance2] 
Angular moment of motion  kg.m2.s-1 J.s  [Moment of motion]*[Distance]. Like [action] 
Angular velocity  s-1 rad.s-1 [ΔPlane angle]/[ΔTime] 
Annealing point  K    Temperature at which viscosity drops below 1012 Pa.s 
Area  m2   [Distance]*[Distance] 
Area growth rate  m2.s-1   [ΔArea]/[Time] 
Asset | Wealth  cur  currency  Economy and finance 
Atomic number  1  Dimensionless  Number of protons in an atomic nucleus 
Atomic weight | Relative atomic mass  au  atomic units  Average over a typical isotopic composition 
Attenuation | Amplification (generic)   1  usually in dB  [Quantity(p)]/[Quantity(p')], with p being some parameter 
Attenuation / amplification over a distance  m-1 dB/m  [Attenuation]/[Distance]. Mostly in acoustic and electronics 
Attenuation / amplification over a period  s-1 dB/s  [Attenuation]/[Time]. Mostly in acoustic and electronics 
B:
Bandwidth  s-1 Hz  [ΔFrequency] 
Baud rate | Information flux  bit.s-1 baud  [Information]/[Time] 
Bond duration  s year  Economy and finance 
Bulk modulus  kg.m-1.s-2 N.m-2, Pa ([ΔVolume]/[Volume])/[Pressure]. Inverse of compressibility 
C:
Capacitance, electric  kg-1.m-2.s4.A2 C.V-1, F (farad)  [Charge]/[ΔPotential] 
Capacitive reactance  kg.m2.s-3.A-2 Ω (ohm)  1/(i[Angular frequency].[Capacitance]) 
Capacitive susceptance  kg-1.m-2.s3.A2 S (siemens)  1/[Capacitive reactance] 
Cash flow  cur.s-1 currency/year  [Value]/[ΔTime]. Economy and finance 
Circulation  m2.s-1 J.s.kg-1 [Angular moment]/[Mass], [Velocity]*[Loop length] 
Characteristic impedance  kg.m2.s-3.A-2 V.A-1, Ω, ohm  √([Mag.Permeability]/[El.Permittivity]) 
Charge, electric  s .A C (coulomb)  [Current]*[Time] 
Charge, magnetic (bound)  m-2.A   - ∇.[Magnetization] , -Divergence of magnetization 
Charge, quantum  1  Dimensionless  [Charge]/[Elementary charge quantum] 
Charge, molecular/ionic, quantum  1  Dimensionless  [Charge of a molecule or ion]/[Elementary charge quantum] 
Charge density  m-3.s.A  C.m-3 [Charge]/[Volume] 
Charge/mass ratio | Specific charge  kg-1.s.A  C.kg-1 [Charge]/[Mass] 
Charge, molar  s.A.mol-1  C.mol-1 [Charge]/[Quantity] 
Chemical potential, molar  kg.m2.s-2.mol-1 J.mol-1 [ΔInternalEnergy]/[ΔQuantity] 
Circuit admittance  kg-1.m-2.s3.A2 S (siemens)  1/[Circuit impedance] 
Circuit impedance  kg.m2.s-3.A-2 Ω (ohm)   
Circulation / velocity of money  s-1 1/year  [Transactions]/[Time period]. Economy and finance 
Circumference | Perimeter  m     
Collision cross section | Cross section  m2   [Distance]*[Distance] 
Compressibility  kg-1.m.s2 Pa-1 [Pressure]/([ΔVolume]/[Volume]). Inverse of bulk modulus 
Compression  kg.m-1.s-2 N.m-2, Pa (pascal) [Force]/[Area]. Same as pressure 
Compression factor of a real gas  1  Dimensionless  pV/(nRT). For ideal gas equals 1; temperature dependent 
Compressive strength  kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Like pressure 
Concentration, molar  m-3.mol   [Quantity]/[Volume]. Same as molar density 
Concentration gradient, molar  m-4.mol   [Molarity]/[Distance]. Same as molarity gradient 
Concentration ratio, molar  1  Dimensionless  [Partial quantity]/[Total quantity] 
Concentration ratio, by mass  1  Dimensionless  [Partial mass]/[Total mass] 
Concentration ratio, by volume  1  Dimensionless  [Partial volume]/[Total volume]. .
Concentration, by weight (obsolete)  1  Dimensionless  [Partial mass]/[Total mass]. Obsolete: use by mass 
Conductance, electric  kg-1.m-2.s3.A2 A.V-1, S (siemens)  1/[Resistance] 
Conductivity, electric  kg-1.m-3.s3.A2 S.m-1 1/[Resistivity] 
Conductivity, hydraulic  m.s-1 m/s  Used for porous media 
Conductivity, molar  kg-1.s3.A2.mol-1 S.m2.mol-1 [El.conductivity]/[Concentration] 
Conductivity, thermal  kg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/([Distance]*[ΔTemperature]) 
Constringence | Abbé number | V-number  1  Dimensionless  VD = (nD-1)/(nF-nC) 
Convergence  m-1 dioptry  in optics, but not only 
Cosmological constant Λ  m-2   Present in Einstein's equation 
Cosmological expansion rate  s-1 km/s/Mpc  [Velocity]/[Distance]. Mpc stands for Megaparsec 
Count of events/instances  1    This covers all kinds of enumerations 
Count rate  s-1   [Counts]/[Time] 
Couple  kg.m2.s-2 N.m  2*[Force]*[Distance] for two non-aligned opposing forces 
Critical angle of repose  rad  or degree  Steepest angle of a slope before a slide 
Cross section  m2   [Distance]*[Distance] 
Cryoscopic constant  kg.mol-1.K K/(mol/kg)  [ΔTemperature]/[Molality] 
Current, electric  A  A (ampere)   
Current density, electric  m-2.A   [Current]/[Area]. Same as current intensity 
Current intensity, electric  m-2.A   [Current]/[Area]. Same as current density 
Current noise, variance nJ2  s.A2 A2/Hz [Current]2/[Bandwidth]
Curvature  m-1   1/[Curvature radius] 
Curvature radius  m    of a line in plane/space or surface in space 
D:
D'Alembert operator | D'Alembertian  m-2   (1/c2)2/∂t2 - ∂2/∂x2 - ∂2/∂y2 - ∂2/∂z2 
Debt | Liability  cur  currency  Economy and finance 
Debt/GDP ratio  s year  [Debt]/[Earnings]. Economy and finance 
Deceleration | Acceleration  m.s-2   [ΔVelocity]/[ΔTime] 
Deceleration, angular  s-2 rad.s-2 [ΔAngular velocity]/[ΔTime] 
Density of electric charge  m-3.s.A  C.m-3 [Charge]/[Volume] 
Density of electric current  m-2.A   [Current]/[Area]. Same as current intensity 
Density of energy  kg.m-1.s-2 J.m-3 [Energy]/[Volume] 
Density of mass  kg.m-3   [Mass]/[Volume]. Same as specific density 
Density of mass, gradient of  kg.m-4   [Mass density]/[Distance]. Same as specific density gradient 
Density of particles  m-3   [Count]/[Volume]. Obsolete: number density 
Density of substance  m-3.mol   [Quantity]/[Volume]. Same as molar concentration 
Derivative with respect to time  s-1   d/dt, ∂/∂t 
Derivative with respect to a length  m-1   d/dr, ∂/∂r, r = x | y | z 
Dielectric constant | Relative permittivity  1  Dimensionless  [Permittivity]/[Permittivity of vacuum] 
Dielectric strength/rigidity | Electric strength  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance] 
Diffusion coefficient  m2.s-1   [Distance]2/[Time] 
Diffusivity, thermal  m2.s-1   ([∂Temperatute]/[∂Time])/[∇2Temperature].
Dipole moment, electric  m.s.A  C.m  [Charge]*[Distance] 
Dipole moment, magnetic  m2.A J.T-1 [Current]*[Area] 
Dispersive power  1  Dimensionless  Ratio of differences of refractive indices 
Dispersivity quotient  m-1   [ΔRefractive index]/[ΔWavelength] 
Displacement, electric  m-2.s.A C.m-2 [Charge]/[Area]. Same as electric flux density 
Displacement four-tensor (relativistic Dμν)  m-1.A   Like magnetic intensity 
Distance  m    in all Euclidean n-dimensional spaces 
Dose of absorbed radiation  m2.s-2 J.kg-1, Gy (gray)  [Energy]/[Mass] 
Dose rate  m2.s-3 Gy.s-1 [Absorbed dose]/[Time] 
Drift speed  m.s-1   Steady-state speed of an object. .
Duration  s  s (second)   
Dynamic viscosity  kg.m-1.s-1 Pa.s  ([Force]/[Area])/[ΔVelocity] 
E:
Earnings | Income rate  cur.s-1 currency/year  [Value]/[Time period]. Economy and finance 
Ebullioscopic constant  kg.mol-1.K K/(mol/kg)  [ΔTemperature]/[Molality] 
Electric capacitance  kg-1.m-2.s4.A2 C.V-1, F (farad)  [Charge]/[ΔPotential] 
Electric charge  s .A C (coulomb)  [Current]*[Time] 
Electric conductance  kg-1.m-2.s3.A2 A.V-1, S (siemens)  [Current]/[ΔPotential]. Inverse of resistance 
Electric conductivity  kg-1.m-3.s3.A2 S.m-1 1/[Resistivity] 
Electric conductivity, molar  kg-1.s3.A2.mol-1 S.m2.mol-1 [El.conductivity]/[Concentration] 
Electric current  A  A (ampere)   
Electric dipole moment  m.s.A  C.m  [Charge]*[Distance] 
Electric displacement  m-2.s.A C.m-2 [Charge]/[Area]. Same as electric flux density 
Electric field strength | Electric intensity  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance] 
Electric field gradient  kg.s-3.A-1 V.m-2 [ΔEl.field strength]/[Distance] 
Electric flux density | Electric induction  m-2.s.A C.m-2 [Charge]/[Area] 
Electric inductance  kg.m2.s-2.A-2 V.s.A-1, H (henry)  [ΔPotential]/[dCurrent/dt] 
Electric induction  m-2.s.A C.m-2 [Charge]/[Area]. More properly electric flux density 
Electric intensity  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance]. More properly electric field strength 
Electric permittivity  kg-1.m-3.s4.A2 F.m-1 [El.flux density]/[El.field strength] 
Electric permittivity, relative  1  Dimensionless  [Permittivity]/[Permittivity of vacuum]. Same as dielectric constant 
Electric polarization  m-2.s.A C.m-2 [Charge]/[Area]. Like electric flux density 
Electric potential  kg.m2.s-3.A-1 W.A-1, J.C-1, V (volt)  [Power]/[Current], [Energy]/[Charge] 
Electric quadrupole moment  m2.s.A  C.m2 [Electric dipole]*[Distance], [Electric charge]*[Distance2] 
Electric resistance  kg.m2.s-3.A-2 V.A-1, Ω (ohm)  [ΔPotential]/[Current] 
Electric resistivity  kg.m3.s-3.A-2 Ω.m  ([Resistance]*[Length])/[Area] 
Electric strength | Dielectric strength  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance]. .
Electromagnetic field tensor (relativistic Fμν)  kg.s-2.A-1 T  Like magnetic flux density 
Electromagnetic displacement (relat. Dμν)  m-1.A   Like magnetic intensity 
Electromagnetic four-current (relativistic Jα)  m-2.A   Like current density and [Charge]*[c] 
Electromagnetic four-potential (relativistic Aα)  kg.m.s-2.A-1 m-1.s.V, m.T Like magnetic vector potential and [El.potential]/[c] 
Electromotive force (emf)  kg.m2.s-3.A-1 V  [ΔPotential] 
Electron affinity (always molar)  kg.m2.s-2.mol-1 J.mol-1 Energy released binding an electron 
Electronegativity, Pauling χ  1  Dimensionless  Relative tendency of an atom to attract electrons; χ(H)=2.20.  
Electrostriction coefficient  kg-2.m-2.s6.A2 m2.V-2 ([ΔVolume]/[Volume])/[Electric field strength]2 
Emittance, luminous  cd.sr.m-2 lm.m-2, lx (lux)  [Luminous flux]/[Area]. Same as luminous exitance 
Energy  kg.m2.s-2 N.m, J (joule)  [Force]*[Distance], [Power]*[Time] 
Energy, molar  kg.m2.s-2.mol-1 J.mol-1 [Energy]/[Quantity] 
Energy, specific  m2.s-2 J.kg-1 [Energy]/[Mass] 
Energy density  kg.m-1.s-2 J.m-3 [Energy]/[Volume] 
Energy flux | Power  kg.m2.s-3 J.s-1, W (watt)  [ΔEnergy]/[ΔTime] 
Enthalpy  kg.m2.s-2 J  Like energy and heat 
Enthalpy, molar  kg.m2.s-2.mol-1 J.mol-1 [Enthalpy]/[Quantity]. Like molar heat 
Enthalpy, specific  m2.s-2 J.kg-1 [Enthalpy]/[Mass]. Like specific heat 
Entropy  kg.m2.s-2.K-1 J.K-1 [ΔHeat]/[Temperature] 
Entropy, molar  kg.m2.s-2.K-1.mol-1 J.K-1.mol-1 [Entropy]/[Quantity] 
Entropy, specific  m2.s-2.K-1 J.K-1.kg-1 [Entropy]/[Mass] 
Evolution rate, log-scale  s-1   d{ln(Q)}/dt = (dQ/dt)/Q. Same as relative evolution rate 
Expansion coefficient, thermal  K-1   ([ΔLength]/[Length])/[Temperature] 
Expansion rate, cosmological  s-1 km/s/Mpc  [Velocity]/[Distance]. Mpc stands for Megaparsec 
Expectation frequency  s-1   [Counts]/[Time]. Like count rate 
Exposure  kg-1.s.A C.kg-1 [Charge]/[Mass]. Used for ionising radiations 
Extinction coefficient  m-1 dB/m  [Ratio]/m. Used mostly for radiation 
F:
Field tensor, electromagnetic (relativistic Fμν)  kg.s-2.A-1 T  Like magnetic flux density 
Fire point  K    Temperature at which ignited vapour keeps burning 
Flash point  K    Temperature at which vapour can be kept burning 
Flow  cur.s-1 currency/year  [ΔValue]/[ΔTime]. Economy and finance: time derivative 
Flow rate, of mass | Mass production rate  kg.s-1   [ΔMass]/[Time]. For example, through a pipe 
Flow rate, of volume  m3.s-1   [ΔVolume]/[Time]. For example, through a pipe 
Force  kg.m.s-2 N (newton)  [Mass]*[Acceleration] 
Force, thermodynamic  kg.m.s-2.mol-1 N/mol  [ΔChemical potential]/[Distance] 
Four-current (relativistic Jα)  m-2.A   Like current density and [Charge]*[c] 
Four-potential (relativistic Aα)  kg.m.s-2.A-1 m-1.s.V, m.T Like magnetic vector potential and [El.potential]/[c] 
Four-tensor elmag displacement (relat. Dμν)  m-1.A   Like magnetic intensity 
Four-tensor elmag field (relativistic Fμν)  kg.s-2.A-1 T  Like magnetic flux density 
Free energy  kg.m2.s-2 J  Also Helmholtz function. Like energy 
Free energy, molar  kg.m2.s-2.mol-1 J.mol-1 [Free energy]/[Quantity]. Like Helmholtz function 
Free energy, specific  m2.s-2 J.kg-1 [Free energy]/[Mass]. Like specific Helmholtz function 
Free enthalpy  kg.m2.s-2 J  Also Gibbs function. Like energy 
Free enthalpy, molar  kg.m2.s-2.mol-1 J.mol-1 [Free enthalpy]/[Quantity]. Like molar Gibbs function 
Free enthalpy, specific  m2.s-2 J.kg-1 [Free enthalpy]/[Mass]. Like specific Gibbs function 
Frequency of events  s-1   [Counts]/[Time] 
Frequency of waves  s-1 Hz  hertz 
Frequency drift rate  s-2 Hz.s-1 [ΔFrequency]/[Time] 
Friction  kg.m.s-2 N  Tangential force between two moving surfaces 
Friction coefficient  1  Dimensionless  [Tangential force]/[Normal force] 
Fugacity  kg.m-1.s-2 Pa  Effective pressure in real gases 
G:
Gain of a device  1  Dimensionless  [Output]/[Input], like-quantities ratio. Often in dB 
GDP Gross domestic product  cur.s-1 currency/year  [Earnings]. Economy and financee: of an administrative region 
g-factor of a particle  1  Dimensionless  [Magnetic moment]/([Spin].[Bohr magneton]) 
Gradient, of electric field  kg.s-3.A-1 V.m-2 [ΔEl.field strength]/[Distance] 
Gradient, of magnetic field  kg.m-1.s-2.A-1 T.m-1 [ΔMag.flux density]/[Distance] 
Gradient, of mass density  kg.m-4   [Mass density]/[Distance]. Same as specific density gradient 
Gradient, of pressure  kg.m-2.s-2 N.m-3, Pa/m [Pressure]/[Distance] 
Gradient, thermal  K.m-1   [ΔTemperature]/[Distance]. Same as temperature gradient 
Gravitational constant G  kg-1.m3.s-2   [Force]*[Distance]2/[Mass]2. Appears in Newton's equation 
Gravitational field intensity | Gravity  m.s-2   [Force]/[Mass], [Acceleration] 
Gravitational field potential  m2.s-2   [Energy]/[Mass].  
Gravity | Gravitational field intensity  m.s-2   [Force]/[Mass], [Acceleration] 
Growth rate, relative  s-1   [Relative variation]/[Time] 
Growth rate, linear  m.s-1   [ΔLength]/[Time] 
Growth rate, of area/surface  m2.s-1   [ΔArea]/[Time] 
Growth rate, of volume  m3.s-1   [ΔVolume]/[Time] 
Gyromagnetic ratio  kg-1.s.A Hz.T-1 [Mag.moment]/[Angular moment of motion] 
H:
Half life  s    of a non-conservative / decaying quantity 
Hamiltonian  kg.m2.s-2 J  [Force]*[Distance], [Power]*[Time]. Like energy 
Hardness  kg.m-1.s-2 N.m-2 [Force]/[Area]. Same as pressure 
Heat  kg.m2.s-2 J  Like energy 
Heat, molar  kg.m2.s-2.mol-1 J.mol-1 [Heat]/[Quantity] 
Heat, specific  m2.s-2 J.kg-1 [Heat]/[Mass] 
Heat capacity  kg.m2.s-2.K-1 J.K-1 [ΔHeat]/[ΔTemperature] 
Heat capacity, molar  kg.m2.s-2.K-1.mol-1 J.K-1.mol-1 [Heat capacity]/[Quantity] 
Heat capacity, specific  m2.s-2.K-1 J.K-1.kg-1 [Heat capacity]/[Mass] 
Heat conductivity | Thermal conductivity  kg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/([Distance]*[ΔTemperature]) 
Heat flux  kg.m2.s-3 J.s, W  [ΔHeat]/[ΔTime]. Like power 
Heat flux density  kg.s-3 W.m-2 [Heat flux]/[Area]. Same as irradiance 
Heat of fusion/evaporation, specific  m2.s-2 J.kg-1 [Energy]/[Mass] 
Heat of fusion | evaporation, molar  kg.m2.s-2.mol-1 J.mol-1 [Energy]/[Quantity] 
Hydraulic conductivity  m.s-1 m/s  Used for porous media 
Hydraulic permeability  m2 1 darcy = 10-12 m2 [Velocity]*[Viscosity]/[Pressure gradient], in porous media 
I:
Illuminance  cd.sr.m-2 lm.m-2, lx (lux)  [Luminous flux]/[Area] 
Impact resistance  kg.s-2 J.m-2 [Energy]/[Area] 
Impedance, acoustic  kg.m-4.s-1 Pa.s/m3, reyl/m2 [ΔPressure]/[Volume flow rate]. Also acu. resistance / reactance 
Impedance, acoustic, specific  kg.m-2.s-1 Pa.s/m , reyl [ΔPressure]*[Velocity]. Also s.acu. resistance / reactance 
Impedance, characteristic, electric  kg.m2.s-3.A-2 V.A-1, Ω, ohm  √([Mag.Permeability]/[El.Permittivity]) 
Impedance, inductive  kg.m2.s-3.A-2 Ω (ohm)  i[Angular frequency].[Inductance] 
Impedance, of a circuit  kg.m2.s-3.A-2 Ω (ohm)   
Impulse  kg.m.s-1   [ΔMoment of motion], [Force]*[ΔTime], [Mass]*[ΔVelocity] 
Income rate | Earnings  cur.s-1 currency/year  [Value]/[Time period]. Economy and finance 
Inductance  kg.m2.s-2.A-2 V.s.A-1, Wb.A-1, H (henry)  [ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] 
Induction, electric  m-2.s.A C.m-2 [Charge]/[Area]. Same as electric flux density 
Inductive admittance  kg-1.m-2.s3.A2 S (siemens)  1/[Inductive impedance] 
Inductive impedance  kg.m2.s-3.A-2 Ω (ohm)  i[Angular frequency].[Inductance] 
Information  bit-1 bit  One bit is the elementary information quantum 
Information flux | Baud rate  bit.s-1 baud  [Information]/[Time] 
Intensity of electric current  m-2.A   [Current]/[Area]. Same as current density 
Interest  1  %  [ΔWealth]/[Wealth]. Economy and finance 
Interest rate  s-1 %/year  [Interest]/[Time period]. Economy and finance 
Internal energy  kg.m2.s-2 J  Like energy and heat 
Internal energy, molar  kg.m2.s-2.mol-1 J.mol-1 [Internal energy]/[Quantity]. Like molar heat 
Internal energy, specific  m2.s-2 J.kg-1 [Internal energy]/[Mass]. Like specific heat 
Ion mobility  kg-1.m-1.s2.A m2.s-1.V-1  [Velocity]/[Electric field strength] .
Ionic force (strength)  m-3.mol   Sum([Concentration]*[Ionic quantum charge]2).
Ionic quantum charge  1  Dimensionless  [Ion charge]/[Elementary charge quantum] 
Ionic strength (force)  m-3.mol   Sum([Concentration]*[Ionic quantum charge]2).
Ionization energy, molar  kg.m2.s-2.mol-1 J.mol-1 Energy to ionize a molecule/atom 
Irradiance  kg.s-3 W.m-2 [Heat flux]/[Area]. Same as heat flux density 
J:
Joule-Thomson coefficient  kg-1.m.s2.K K.Pa-1 [ΔTemperature]/[ΔPressure] 
K:
Katalytic activity  mol.s-1 katal  [ΔQuantity]/[Time]. Same as molar production rate 
Kinematic viscosity  m2.s-1   [Dynamic viscosity]/[Density] 
K-space vector | Reciprocal space position  m-1    
L:
Lagrangian  kg.m2.s-2 J  [Force]*[Distance], [Power]*[Time]. Like energy 
Laplace operator | Laplacian m-2   2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 
Length  m  m (meter)   
Liability | Debt  cur  currency  Economy and finance 
Linear stiffness  kg.s-2 N.m-1 [Force]/[Displacement]. ... of a structure 
Logarithmic ratio logb(A/A') in any base b  1    Applicable to any ratio of commensurable quantities 
Logarithmic ratio ln(A/A')  1  Np  Neper. Uses natural logarithm 
Logarithmic ratio Log(P/P')/10  1  dB (decibel)  Uses base-10 logarithm. Aplies only to power P
Logarithmic ratio Log(X/X')/20  1  dB (decibel)  Aplies to voltages (X=V) and currents (X=I) 
Logarithmic scale differential  1  Dimensionless  dQ/Q, d{ln(Q)}, for any quantity Q. Also relative differential 
Logarithmic scale probability density  1  1/Np  [Probability]/[Natural-logarithmic ratio] 
Loss of a device  1  Dimensionless  [Output]/[Input], like-quantities ratio. Often in dB 
Luminance  cd.m-2   [Luminosity]/[Area] 
Luminosity  cd  cd (candle)  Same as luminous intensity 
Luminous coefficient  1  Dimensionless  [Luminous efficacy]/[683 lm/W]. Same as luminous efficiency 
Luminous efficacy  cd.sr.kg-1.m-1.s3 lm/W  [Luminous flux]/[Power] 
Luminous efficiency  1  Dimensionless  [Luminous efficacy]/[683 lm/W]. Same as luminous coefficient 
Luminous emittance  cd.sr.m-2 lm.m-2, lx (lux)  [Luminous flux]/[Area]. Same as luminous exitance 
Luminous energy  cd.sr.s  lm.s  [Luminous flux]*[Time]. Known as talbot 
Luminous flux  cd.sr  lm (lumen)  [Luminosity]*[Solid angle]. Same as luminous power 
Luminous intensity  cd  cd (candle)  Same as luminosity 
Luminous power  cd.sr  lm (lumen)  [Luminosity]*[Solid angle]. Same as luminous flux 
M:
Magnetic charge (bound)  m-2.A   - ∇.[Magnetization] , -Divergence of magnetization 
Magnetic dipole moment  m2.A J.T-1 [Current]*[Area]. Same as magnetic moment 
Magnetic field gradient  kg.m-1.s-2.A-1 T.m-1 [ΔMag.flux density]/[Distance] 
Magnetic field strength | Magnetic intensity  m-1.A   [Current]/[Distance] 
Magnetic flux  kg.m2.s-2.A-1 V.s, W.s.A-1, Wb (weber)  [ΔPotential]*[Time], [Power]/[dCurrent/dt] 
Magnetic flux density | Magnetic induction  kg.s-2.A-1 Wb.m-2, T (tesla)  [Mag.flux]/[Area] 
Magnetic induction  kg.s-2.A-1 Wb.m-2, T (tesla)  [Mag.flux]/[Area]. More properly magnetic flux density 
Magnetic intensity  m-1.A   [Current]/[Distance]. More properly magnetic field strength 
Magnetic moment  m2.A J.T-1 [Current]*[Area] 
Magnetic permeability  kg.m.s-2.A-2 H.m-1 [Mag.flux density]/[Mag.field strength] 
Magnetic permeability, relative  1  Dimensionless  [Permeability]/[Permeability of vacuum] 
Magnetic quadrupole moment  m3.A m.J.T-1 [Mag.dipole]*[Distance] 
Magnetic susceptibility  1  Dimensionless  [Relative permeability]-1 
Magnetic vector potential  kg.m.s-2.A-1 m-1.s.V, m.T [Mag.flux density]*[Distance], [El.field strength]*[Time] 
Magnetization  m-1.A   [Mag.moment]/[Volume]. Like magnetic field strength 
Magnetogyric ratio  kg.s-1.A-1 T.Hz-1 [Angular moment of motion]/[Mag.moment] 
Magnetomotive force (mmf)  A    [Current]*[Number of turns] 
Magnitude of a star  1  Dimensionless  m-m'=-100.4(S/S'), where S,S' are the luminous fluxes of two stars 
Mass  kg  kg (kilogram)   
Mass density  kg.m-3   [Mass]/[Volume]. Same as specific density 
Mass density gradient | Specific density gradient  kg.m-4   [Mass density]/[Distance] 
Mass concentration  1  Dimensionless  [Partial mass]/[Total mass] 
Mass flow (total)  kg.s-1 kg  [ΔMass]/[Time]. For example, through a device 
Mass production rate  kg.s-1   [ΔMass]/[Time]. Same as mass flow 
Mass, molar  kg.mol-1   [Mass]/[Quantity] 
Mass number of an isotope  1  Dimensionless  Number of protons+neutrons in the isotope nuclide 
Mean anomaly  1  Dimensionless  Of a body on a Kepler orbit; t.sqrt(G(M1+M2)/r3) 
Mean motion  s-1   Of a body on a Kepler orbit; sqrt(G(M1+M2)/r3) 
Modulus of compression  kg-1.m.s2 Pa-1 [Pressure]/([ΔVolume]/[Volume]). Same as compressibility 
Modulus of rigidity  kg.m-1.s-2 N.m-2, Pa [Stress]/[Strain]. Same as shear modulus 
Mobility, ionic  kg-1.m-1.s2.A m2.s-1.V-1  [Velocity]/[Electric field strength] .
Molality (intended as concentration)  kg-1.mol mol/kg  [Quantity]/[Mass] 
Molar charge  s.A.mol-1  C.mol-1 [Charge]/[Quantity] 
Molar concentration  m-3.mol   [Quantity]/[Volume]. Same as concentration or molarity 
Molar concentration gradient  m-4.mol   [Molarity]/[Distance]. Same as molarity gradient 
Molar concentration ratio  1  Dimensionless  [Partial quantity]/[Total quantity] 
Molar conductivity, electric  kg-1.m-3.s3.A2.mol-1 S.m-1.mol-1 [El.conductivity]/[Concentration] 
Molar density  m-3.mol   [Quantity]/[Volume]. Same as concentration 
Molar energy  kg.m2.s-2.mol-1 J.mol-1 [Energy]/[Quantity] 
Molar enthalpy  kg.m2.s-2.mol-1 J.mol-1 [Enthalpy]/[Quantity]. Like molar heat 
Molar entropy  kg.m2.s-2.K-1.mol-1 J.K-1.mol-1 [Entropy]/[Quantity] 
Molar free energy  kg.m2.s-2.mol-1 J.mol-1 [Free energy]/[Quantity]. Also molar Helmholtz function 
Molar free enthalpy  kg.m2.s-2.mol-1 J.mol-1 [Free enthalpy]/[Quantity]. Also molar Gibbs function 
Molar heat  kg.m2.s-2.mol-1 J.mol-1 [Heat]/[Quantity] 
Molar heat capacity  kg.m2.s-2.K-1.mol-1 J.K-1.mol-1 [Heat capacity]/[Quantity] 
Molar internal energy  kg.m2.s-2.mol-1 J.mol-1 [Internal energy]/[Quantity]. Like molar heat 
Molar mass  kg.mol-1   [Mass]/[Quantity] 
Molar particle count  mol-1   [Count]/[Mol]. For example, the Avogadro constant 
Molar production rate  mol.s-1   [ΔQuantity]/[Time]. 
Molar refractivity  m3.mol-1   [(r2-1)/(r2+2)]/[Concentration], where r is the refractive index 
Molar relaxivity  s-1.mol-1   [Relaxation rate]/[Concentration] 
Molar solubility  m-3.mol   [Quantity]/[Volume]. Same as concentration 
Molar volume  m3.mol-1   [Volume]/[Quantity] 
Molarity  m-3.mol   [Quantity]/[Volume]. Same as concentration or molar density 
Molarity gradient  m-4.mol   [Molarity]/[Distance]. Same as concentration gradient 
Molecular quantum charge  1  Dimensionless  [Charge of a molecule]/[Elementary charge quantum] 
Moment of force  kg.m2.s-2 N.m  [Force]*[Distance] 
Moment of motion  kg.m.s-1   [Mass]*[Velocity], [Mass flow]*[Distance] 
Multiple derivatives with respect to time  s-p   dp/dtp, ∂p/∂tp; for p = 1,2,3,.. 
Multiple derivatives with respect to a length  m-p   dp/drp, ∂p/∂rp; for p = 1,2,3,..., r = x | y | z 
Mutual inductance  kg.m2.s-2.A-2 V.s.A-1, Wb.A-1, H (henry)  [ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] 
N:
Nabla ( ∇ ) | div | grad | rot | curl  m-1   Any derivative-like construct with respect to a distance 
Notch resistance  kg.s-2 J.m-2 [Energy]/[Area] 
Number of instances / events  1    This covers all kinds of enumerations 
Number density  m-3   [Particles]/[Volume]. Obsolete; see particle density 
Number of turns  1    Often used in electric engineering 
O:
Osmotic pressure  kg.m-1.s-2 Pa  
P:
Particle count, molar  mol-1   [Count]/[Mol]. For example, the Avogadro constant 
Particle density  m-3   [Count]/[Volume]. Obsolete: number density 
P/E Price/Earnings ratio  s year  [Value]/[Earnings]. Economy and finance 
Peltier coefficient  kg.m2.s-3.A-1 W.A-1, V [Heat flux]/[Current] 
Perimeter | Circumference  m     
Permeability, magnetic  kg.m.s-2.A-2 H.m-1 [Mag.flux density]/[Mag.field strength] 
Permeability, hydraulic  m2 1 darcy = 10-12 m2 [Velocity]*[Viscosity]/[Pressure gradient], in porous media 
Permittivity, electric  kg-1.m-3.s4.A2 F.m-1 [El.flux density]/[El.field strength] 
Permittivity, relative  1  Dimensionless  [Permittivity]/[Permittivity of vacuum]. Dielectric constant 
Phase | Phase angle  1  rad  φ typically in exp(i(ωt+φ)) 
Phase drift rate  s-1 rad.s-1 [Phase angle]/[Time] 
Pi coefficient, molar  kg.m-1.s-2.mol-1 J.m-3 [ΔInternalEnergy]/[ΔVolume] 
Piezzoelectric coefficient  kg.m.s-3.A-1 V.m-1 [Electric field strength]/([ΔLength]/[Length]) 
Plane angle  1  rad   
Poisson's ratio  1  Dimensionless  [Transversal striction]/[Londitudinal elongation] 
Polarization, electric  m-2.s.A C.m-2 [Charge]/[Area]. Like electric flux density 
Porosity, superficial  1  Dimensionless  [Void cross section]/[Total cross section], in porous media 
Porosity, volume  1  Dimensionless  [Pores volume]/[Total volume], in porous media 
Position vector  m    in all Euclidean n-dimensional spaces 
Potential, electric  kg.m2.s-3.A-1 W.A-1, J.C-1, V (volt)  [Power]/[Current], [Energy]/[Charge] 
Power  kg.m2.s-3 J.s-1, W (watt)  [ΔEnergy]/[ΔTime]. Equivalent to energy flux 
Prandtl number  1  Dimensionless  [Kinematic viscosity]/[Thermal diffusivity] 
Propagation loss  m-1 dB/m  [Ratio]/m. Generic, usable for any quantity 
Poynting vector  kg.s-3 W.m-2 [El.field strength]/[Mag.field strength]. Like irradiance 
Pressure  kg.m-1.s-2 N.m-2, Pa (pascal) [Force]/[Area] 
Pressure gradient  kg.m-2.s-2 N.m-3, Pa/m [Pressure]/[Distance] 
Price | Value  cur  currency  Economy and finance 
Probability of an event  1    Real number in a dimensionless interval [0,1] 
Probability density on log-scale  1  Np-1 [Probability]/[Natural-logarithmic ratio] 
Purchase | Transaction value  cur  currency  Economy and finance 
Q:
Quadrupole moment, electric  m2.s.A  C.m2 [Electric dipole]*[Distance], [Electric charge]*[Distance2] 
Quadrupole moment, magnetic  m3.A m.J.T-1 [Mag.dipole]*[Distance] 
Quantity of substance  mol  mol   
Quantum charge  1  Dimensionless  [Charge]/[Elementary charge quantum] 
Quantum charge, molecular or ionic  1  Dimensionless  [Molecule/ion charge]/[Charge quantum] 
Quotient of dispersivity  m-1   [ΔRefractive index]/[ΔWavelength] 
R:
Radiance  kg.s-3.sr-1 W.m-2.sr-1 ([Power]/[Area])/[Solid angle] 
Radiation dose  m2.s-2 J.kg-1, Gy (gray)  [Energy]/[Mass] 
Radiation dose rate  m2.s-3 Gy.s-1 [Absorbed dose]/[Time] 
Radioactivity  s-1 Bq (becquerel)  [Counts]/[Time] 
Radius of curvature  m    of a line in plane/space or surface in space 
Rotational stiffness  kg.m2.s-2.rad-1 N.m.rad-1 [Moment of force]/[Angle]. ... of a structure 
Ratio of commensurable quantities  1  Dimensionless  Q1/Q2, with Q1 and Q2 having the same dimension 
Reactance, acoustic  kg.m-4.s-1 Pa.s/m3, reyl/m2 [ΔPressure]/[Volume flow rate]. Also acu. impedance / resistance 
Reactance, acoustic, specific  kg.m-2.s-1 Pa.s/m , reyl [ΔPressure]*[Velocity]. Also s.acu. impedance / resistance 
Reactance, capacitive  kg.m2.s-3.A-2 Ω (ohm)  1/(i[Angular frequency].[Capacitance]) 
Reciprocal space position | K-space vector  m-1    
Redox potential  kg.m2.s-3.A-1 V (volt)  Same as reduction potential 
Reduction potential  kg.m2.s-3.A-1 V (volt)  Same as redox potential 
Refractive index  1  Dimensionless  Light speeds ration (in a medium)/(in vacuum) 
Refractivity, molar  m3.mol-1   [(r2-1)/(r2+2)]/[Concentration] 
Refractivity, specific  m3.kg-1   [(r2-1)/(r2+2)]/[Specific density], 
Relative atomic mass | Atomic weight  au  atomic units  Average over a typical isotopic composition 
Relative differential  1  Dimensionless  dQ/Q, d{ln(Q)}, for any quantity Q. Also log-scale differential 
Relative evolution rate  s-1   d{ln(Q)}/dt = (dQ/dt)/Q. Also log-scale evolution rate 
Relative permeability, magnetic  1  Dimensionless  [Permeability]/[Permeability of vacuum] 
Relative permittivity, electric  1  Dimensionless  [Permittivity]/[Permittivity of vacuum]. Dielectric constant 
Relative variation  1  Dimensionless  ΔQ/Q, for any quantity Q 
Relativistic displacement four-tensor (Dμν)  m-1.A   Like magnetic intensity 
Relativistic electromagnetic field tensor (Fμν)  kg.s-2.A-1 T  Like magnetic flux density 
Relativistic four-current (Jα)  m-2.A   Like current density and [Charge]*[c] 
Relativistic four-potential (Aα)  kg.m.s-2.A-1 m-1.s.V, m.T Like magnetic vector potential and [El.potential]/[c] 
Relaxation rate  s-1   1/[Relaxation time]. Used for returns to equilibria 
Relaxation time  s    Used for returns to equilibria 
Relaxivity, molar  s-1.mol-1   [Relaxation rate]/[Concentration] 
Reluctance, magnetic  kg-1.m-1.s2.A2 m.H-1 1/[Permeability] 
Resistance, acoustic  kg.m-4.s-1 Pa.s/m3, reyl/m2 [ΔPressure]/[Volume flow rate]. Also acu. impedance / reactance 
Resistance, acoustic, specific  kg.m-2.s-1 Pa.s/m , reyl [ΔPressure]*[Velocity]. Also s.acu. impedance / reactance 
Resistance, electric  kg.m2.s-3.A-2 V.A-1, Ω (ohm)  [ΔPotential]/[Current] 
Resistance, thermal  kg-1.m-2.s3K K/W  of a device. [ΔT]/[Power].
Resistance to impact  kg.s-2 J.m-2 [Energy]/[Area]. Like notch resistance 
Resistivity, electric  kg.m3.s-3.A-2 Ω.m  ([Resistance]*[Length])/[Area] 
Return on asset / equity  s-1 %/year  ([ΔValue]/[Value])/[Time period]. Economy and finance 
Reynolds number  1  Dimensionless  [Velocity]*[length]/[Kinematic viscosity] 
RF attenuation  m-1 dB/m  [Ratio]/m. Used mostly for radiation 
S:
Sale | Transaction value  cur  currency  Economy and finance 
Sales flow | Transactions volume  cur.s-1   [Value]/[Time period]. Economy and Finance 
Seeback coefficient  kg.m2.s-3.A-1.K-1 V.K-1 [ΔPotential]/[ΔTemperature]. Same as thermoelectric power 
Self-diffusion coefficient  m2.s-1   [Distance2]/[Time] 
Settling rate  s-1 typically dB/s  [Ratio]/[ΔTime] 
Settling time  s  typically dB/s  Used to describe transient phenomena 
Shear modulus  kg.m-1.s-2 N.m-2, Pa [Stress]/[Strain]. Like Young modulus 
Softening point  K    Temperature at which hardness drops below a level 
Solid angle  1  sr (steradian)   
Solubility, molar  m-3.mol   [Quantity]/[Volume]. Same as concentration 
Sonic attenuation  m-1 dB/m  [Power ratio]/m. Used in acoustics 
Specific acoustic impedance  kg.m-2.s-1 Pa.s/m , reyl [ΔPressure]*[Velocity]. Also s.acu. resistance / reactance 
Specific acoustic conductance  kg-1.m2.s reyl-1 Also specific acoustic susceptance 
Specific charge  kg-1.s.A  C.kg-1 [Charge]/[Mass]. Charge/mass ratio 
Specific density  kg.m-3   [Mass]/[Volume]. Same as density of mass 
Specific density gradient  kg.m-4   [Mass density]/[Distance]. Same as mass density gradient 
Specific energy  m2.s-2 J.kg-1 [Energy]/[Mass] 
Specific enthalpy  m2.s-2 J.kg-1 [Enthalpy]/[Mass]. Like specific heat 
Specific entropy  m2.s-2.K-1 J.K-1.kg-1 [Entropy]/[Mass] 
Specific free energy  m2.s-2 J.kg-1 [Free energy]/[Mass]. Also specific Helmholtz function 
Specific free enthalpy  m2.s-2 J.kg-1 [Free enthalpy]/[Mass]. Also specific Gibbs function 
Specific heat  m2.s-2 J.kg-1 [Heat]/[Mass] 
Specific heat capacity  m2.s-2.K-1 J.K-1.kg-1 [Heat capacity]/[Mass] 
Specific internal energy  m2.s-2 J.kg-1 [Internal energy]/[Mass]. Like specific heat 
Specific refractivity  m3.kg-1   [(r2-1)/(r2+2)]/[Specific density] 
Specific volume  m3.kg-1   [Volume]/[Mass] 
Speed  m.s-1   [Distance]/[Time]. Same as velocity 
Spin  1  Dimensionless  of a quantum particle 
Star magnitude  1  Dimensionless  m-m' = -100.4(S/S'), where S,S' are luminous fluxes of two stars 
Stiffness, linear  kg.s-2 N.m-1 [Force]/[Displacement]. ... of a structure 
Stiffness, rotational  kg.m2.s-2.rad-1 N.m.rad-1 [Moment of force]/[Angle]. ... of a structure 
Strain (mechanical)  1  Dimensionless  [ΔLength]/[Length] Relative deformation 
Strain point  K    Temperature at which viscosity drops below 1013.5 Pa.s 
Strength, compressive  kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Like pressure 
Strength, dielectric  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance]. Same as electric strength 
Strength, electric field | Electric intensity  kg.m.s-3.A-1 V.m-1 [ΔPotential]/[Distance] 
Strength, ionic  m-3.mol   Sum([Concentration]*[Ionic quantum charge]2).
Strength, magnetic field | Magnetic intensity  m-1.A   [Current]/[Distance] 
Strength, tensile  kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Same as pressure 
Superficial porosity  1  Dimensionless  [Void cross section]/[Total cross section], in porous media 
Superficial velocity  m.s-1 m/s  In porous media; as if the space was filled only by the fluid 
Surface area  m2   [Distance]*[Distance]. Applicable to 3D bodies 
Surface density of charge  m-2.s.A  C.m-2 [Charge]/[Area] 
Surface element  m2   [Distance]*[Distance]. Same as area 
Surface energy  kg.s-2 J/m2 [Energy]/[Area]. Same as surface tension 
Surface growth rate  m2.s-1   [ΔArea]/[Time] 
Surface tension  kg.s-2 N/m  [Force]/[Length]. Same as surface energy 
Susceptance, acoustic, specific  kg-1.m2.s reyl-1 Also specific acoustic conductance 
Susceptance, capacitive  kg-1.m-2.s3.A2 S (siemens)  1/[Reactance] 
Susceptibility, magnetic  1  Dimensionless  [Relative permeability]-1 
Stress  kg.m-1.s-2 Pa, N.m-2 [Force]/[Area]. Same as pressure 
T:
Temperature  K  K (kelvin)   
Temperature gradient  K.m-1   [ΔTemperature]/[Distance]. Same as thermal gradient 
Tensile strength  kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Same as pressure 
Tension  kg.m-1.s-2 Pa, N.m-2 [Force]/[Area]. Like pressure 
Thermal conductivity  kg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/([Distance]*[ΔTemperature]). Same as heat conductivity 
Thermal diffusivity  m2.s-1   ([∂Temperatute]/[∂Time])/[∇2Temperature].
Thermal expansion coefficient  K-1   ([ΔLength]/[Length])/[Temperature] 
Thermal gradient  K.m-1   [ΔTemperature]/[Distance]. Same as temperature gradient 
Thermal resistance  kg-1.m-2.s3K K/W  of a device. [ΔT]/[Power].
Thermodynamic force  kg.m.s-2.mol-1 N/mol  [ΔChemical potential]/[Distance] 
Thermoelectric power | Thermopower  kg.m2.s-3.A-1.K-1 V.K-1 [ΔPotential]/[ΔTemperature]. Same as Seeback coefficient 
Thickness  m    usually referred to planar structures 
Thomson coefficient  kg.m2.s-3.A-1.K-1 W.K-1.A-1 [Heat flux]/([ΔTemperature]*[Current]) 
Time  s  s (second)   
Torque | Moment of force  kg.m2.s-2 N.m  [Force]*[Distance] 
Traction  kg.m.s-2 N (newton)  Maximum tangential force before slipping 
Traction coefficient  1  Dimensionless  [Traction]/[Weight] 
Transaction value | Sale | Purchase  cur  currency  Economy and finance 
Transactions count  1  Dimensionless  Economy and finance 
Transactions rate | Activity  s-1 1/year  [Transactions]/[Time period]. Economy and finance 
Transactions volume | Sales flow  cur.s-1   [Value]/[Time period]. Economy and Finance 
Transmission loss  m-1 dB/m  [Ratio]/m. Generic, usable for any quantity 
U:
V:
V-number | Abbé number | Constringence  1  Dimensionless  VD = (nD-1)/(nF-nC) 
Value | Price  cur  currency  Economy and finance 
van der Waals constant: a  kg.m5.s-2.mol-2 Pa.m6 a in (p+a/V2)(V-b)=RT, where V is molar volume
van der Waals constant: b  m3.mol-1   b in (p+a/V2)(V-b)=RT, where V is molar volume
Variance of current noise nJ2  s.A2 A2/Hz [Current]2/[Bandwidth]
Variance of voltage noise nV2  kg2.m4.s-5.A-2 V2/Hz [Voltage]2/[Bandwidth]
Vector potential, magnetic  kg.m.s-2.A-1 m-1.s.V, m.T [Mag.flux density]*[Distance], [El.field strength]*[Time] 
Velocity  m.s-1 m/s  [Distance]/[Time]. Same as speed 
Velocity, advection  m.s-1 m/s  In porous media; actual progress along pressure gradient 
Velocity, of money (circulation)  s-1 1/year  [Transactions]/[Time period]. Economy and finance 
Velocity, superficial  m.s-1 m/s  In porous media; as if the space was filled only by the fluid 
Verdet constant  kg-1.m-1.s2.A1 rad.m-1.T-1 ([Angle]/[Length])/[Magnetic flux density] 
Virial coefficient: second  m3.mol-1   B in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Virial coefficient: third  m6.mol-2   C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Virial coefficient: fourth  m9.mol-3   C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Viscosity, dynamic  kg.m-1.s-1 Pa.s  ([Force]/[Area])/[ΔVelocity] 
Viscosity, kinematic  m2.s-1   [Dynamic viscosity]/[Density] 
Voltage | Electromotive force  kg.m2.s-3.A-1 V  [ΔPotential] 
Voltage noise, variance nV2  kg2.m4.s-5.A-2 V2/Hz [Voltage]2/[Bandwidth]
Volume  m3   [Area]*[Distance] 
Volume concentration  1  Dimensionless  [Partial volume]/[Total volume] 
Volume flow  m3.s-1   [Volume]/[Time]. For example, through a device 
Volume growth rate  m3.s-1   [Volume]/[Time]. For example, of a crystal 
Volume porosity  1  Dimensionless  [Pores volume]/[Total volume], in porous media 
W:
Wave function for N particles (quantum)  m-3N/2 tentative  |ψ|2N is a dimensionless probability element.
Wavelength  m    [Wave velocity]/[Frequency] 
Wavenumber  m-1   [Number of waves]/[Distance] 
Wealth | Asset  cur  currency  Economy and finance 
Work function  kg.m2.s-2 J, eV  [Energy] needed to remove an electron 
X:
Y:
Young modulus  kg.m-1.s-2 N.m-2, Pa [Stress]/[Strain]. Like shear modulus 
Z:

Notes

Purpose
Physical (or rather metrological) dimensions are often bewildering, even though the international SI system of units has simplified things a lot, compared to early 20th century and before. The main purpose of this page is to provide a fast, handy reference to the dimension you might need at the spur of a moment. Another, less evident, purpose is to stimulate curiosity and the desire to study Metrology and Dimensional Analysis.
Formats and editorial comments
- Bold magenta symbols in the Alternatives column indicate commonly used quantities, mostly defined by the SI system.
- Square brackets convert the quantity they enclose into its dimension.
- Abbreviations El. and Mag. stand for Electric and Magnetic, respectively.
- [Quantity] stands for [Quantity of substance] and its dimension is mol.
- Names of units are always written with small first letter, even when derived from names of persons (for example 1 newton).
Many links, other than those appearing below,
will be soon scattered through the text, accompanying the particular quantities. This feature will be intensified.
Feedback:
If you think a link, or a quantity, are missing, please, let me know. Such suggestions are most appreciated.
Disclaimer:
Since errors do happen, and also because not all metrological conventions are agreed upon and shared by everybody, the Editor of this page declines any responsibility for any damages that might result from its content, directly or indirectly. In other words, if you crash a spacecraft because some of your engineers used meters and others used feet, do not pretend that I should pay for it :-)

References

  • Beaman Jr. Joseph J., Longoria Raul G.,
    Modeling of Physical Systems,
    Wiley 2016. ISBN 978-1119945048. Hardcover >>.
  • Zohuri Bahman,
    Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists,
    Springer 2015. ISBN 978-3319134758. Hardcover >>.
  • Isakov Edmund,
    International System of Units (SI):
    How the world measures almost everything, and the people who made it possible,
    Industrial Press 2014. ISBN 978-0831102319. Paperback >>. Also available as Multimedia CD.
  • Bridgman Percy W.,
    Dimensional Analysis,
    Reprint of the 1922 clasic. TheClassics.us 2013. ISBN 978-1230226214. Paperback >>. Kindle >>.
  • Crease Robert P.,
    World in the Balance: The Historic Quest for an Absolute System of Measurement,
    W.W.Norton & Company 2012. ISBN 978-0393343540. Paperback >>. Kindle >>.
  • Gibbings J.C.,
    Dimensional Analysis,
    Springer 2011. ISBN 978-1849963169. Paperback >>. Kindle >>.
  • Klein Herbert A.,
    The Science of Measurement: A Historical Survey,
    Dover Publications 2011. ISBN 978-0486258393. Paperback >>. Kindle >>.
  • Gupta S.V.,
    Units of Measurement: Past, Present and Future. International System of Units,
    Springer 2009. ISBN 978-3642007378. Hardcover >>. Kindle >>.
  • Palmer Andrew C.,
    Dimensional Analysis and Intelligent Experimentation,
    World Scientific Publishing 2008. ISBN 978-9812708199. Paperback >>.
  • Charalambos D. Aliprantis, Border Kim,
    Infinite Dimensional Analysis: A Hitchhiker's Guide,
    3rd Edition, Springer 2007. ISBN 978-3540326960. Paperback >>.
  • Strothman J, Editor,
    ISA Handbook of Measurement Equations and Tables,
    2nd Edition, ISA (Instrumentation, Systems, and Automation) 2006.
    ISBN 978-1556179464. Paperback >>. 2015 Kindle >>.
  • Szirtes Thomas,
    Applied Dimensional Analysis and Modeling,
    2nd Edition, Butterworth-Heinemann 2006. ISBN 978-0123706201. Paperback >>. Kindle >>.
  • Jerrard H.G.,
    Dictionary of Scientific Units Including Dimensionless Numbers and Scales,
    Springer 1992. ISBN 978-0412467202. Paperback >>.
  • Sena L.A.,
    Units of physical quantities and their dimensions,
    Mir Publishers 1973. Hardcover >>.
  • For more, see References on Systems of Units of Measurements


Links


 F BOOKS Lists:     Popular Science  F Mathematics  F Physics  F Chemistry
    Patents+IP  F Electronics | DSP | Tinkering  F Computing     Spintronics  F Materials
    WWW issues  F Instruments / Measurements     Quantum Computing  F NMR | ESR | MRI  F Spectroscopy
Hint: the F symbols above, where present, are links to free online texts (books, courses, theses, ...)

Visitor #

ADVERTISE with us


Link Directories:
PHYSICS | CHEMISTRY
Magnetic Resonance
MATH | COMPUTING
ELECTRONICS
PATENTS+IP
SCIENCE


Support this site!
SHOP from here:

COMPUTERS:
Deals
Bestsellers
Accessories
Calculators


This page is
SPONSORED by:
 

Chemistry software solutions

Dedicated to excellence!

Random offers:

TOP | LIST BY CATEGORY | SI Units | Convertors ! Physics Constants | Math Constants | Notes Stan's LINKS | Stan's Library | Stan's HUB
Copyright ©2005 Stanislav Sýkora. Stan's Library ISSN 2421-1230, DOI: 10.3247/SL1Phys06.003 Designed by Stan Sýkora