| Quantity |
Dimension |
Alternatives |
Definition/Notes |
| A: |
| Abbé number | Constringence | V-number |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
| Absorbed radiation dose |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
| Absorbed dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
| Acceleration, angular |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
| Acceleration | Deceleration |
m.s-2 |
|
[ΔVelocity]/[ΔTime] |
| Acoustic impedance / resistance / reactance |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[Pressure]/[Volume flow rate] |
| Acoustic impedance, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
| Acoustic conductance, specific |
kg-1.m2.s |
reyl-1 |
Inverse of s.acu. impedance. Also s.acu. susceptance |
| Action |
kg.m2.s-1 |
J.s |
[Energy]*[Time], [Moment of motion]*[Distance] |
| Activity of a radioactive source |
s-1 |
Bq (becquerel) |
[Counts]/[Time] |
| Activity, katalytic |
mol.s-1 |
katal |
[ΔQuantity]/[Time]. Same as molar production rate |
| Activity, transactions rate |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
| Admittance, inductive |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Inductive impedance] |
| Admittance, of a circuit |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Circuit impedance] |
| Advection velocity |
m.s-1 |
m/s |
In porous media; actual progress along pressure gradient |
| Albedo, of a surface |
1 |
Dimensionless |
[Reflected elmag power]/[Incident elmag power] |
| Amplification | Attenuation (generic) |
1 |
usually in dB |
[Quantity(p)]/[Quantity(p')], with p being some parameter |
| Angular acceleration |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
| Angular moment of inertia |
kg.m2 |
|
[Mass]*[Distance2] |
| Angular moment of motion |
kg.m2.s-1 |
J.s |
[Moment of motion]*[Distance]. Like [action] |
| Angular velocity |
s-1 |
rad.s-1 |
[ΔPlane angle]/[ΔTime] |
| Annealing point |
K |
|
Temperature at which viscosity drops below 1012 Pa.s |
| Area |
m2 |
|
[Distance]*[Distance] |
| Area growth rate |
m2.s-1 |
|
[ΔArea]/[Time] |
| Asset | Wealth |
cur |
currency |
Economy and finance |
| Atomic number |
1 |
Dimensionless |
Number of protons in an atomic nucleus |
| Atomic weight | Relative atomic mass |
au |
atomic units |
Average over a typical isotopic composition |
| Attenuation | Amplification (generic) |
1 |
usually in dB |
[Quantity(p)]/[Quantity(p')], with p being some parameter |
| Attenuation / amplification over a distance |
m-1 |
dB/m |
[Attenuation]/[Distance]. Mostly in acoustic and electronics |
| Attenuation / amplification over a period |
s-1 |
dB/s |
[Attenuation]/[Time]. Mostly in acoustic and electronics |
| B: |
| Bandwidth |
s-1 |
Hz |
[ΔFrequency] |
| Baud rate | Information flux |
bit.s-1 |
baud |
[Information]/[Time] |
| Bond duration |
s |
year |
Economy and finance |
| Bulk modulus |
kg.m-1.s-2 |
N.m-2, Pa |
([ΔVolume]/[Volume])/[Pressure]. Inverse of compressibility |
| C: |
| Capacitance, electric |
kg-1.m-2.s4.A2 |
C.V-1, F (farad) |
[Charge]/[ΔPotential] |
| Capacitive reactance |
kg.m2.s-3.A-2 |
Ω (ohm) |
1/(i[Angular frequency].[Capacitance]) |
| Capacitive susceptance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Capacitive reactance] |
| Cash flow |
cur.s-1 |
currency/year |
[Value]/[ΔTime]. Economy and finance |
| Circulation |
m2.s-1 |
J.s.kg-1 |
[Angular moment]/[Mass], [Velocity]*[Loop length] |
| Characteristic impedance |
kg.m2.s-3.A-2 |
V.A-1, Ω, ohm |
√([Mag.Permeability]/[El.Permittivity]) |
| Charge, electric |
s .A |
C (coulomb) |
[Current]*[Time] |
| Charge, magnetic (bound) |
m-2.A |
|
- ∇.[Magnetization] , -Divergence of magnetization |
| Charge, quantum |
1 |
Dimensionless |
[Charge]/[Elementary charge quantum] |
| Charge, molecular/ionic, quantum |
1 |
Dimensionless |
[Charge of a molecule or ion]/[Elementary charge quantum] |
| Charge density |
m-3.s.A |
C.m-3 |
[Charge]/[Volume] |
| Charge/mass ratio | Specific charge |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass] |
| Charge, molar |
s.A.mol-1 |
C.mol-1 |
[Charge]/[Quantity] |
| Chemical potential, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[ΔInternalEnergy]/[ΔQuantity] |
| Circuit admittance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Circuit impedance] |
| Circuit impedance |
kg.m2.s-3.A-2 |
Ω (ohm) |
|
| Circulation / velocity of money |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
| Circumference | Perimeter |
m |
|
|
| Collision cross section | Cross section |
m2 |
|
[Distance]*[Distance] |
| Compressibility |
kg-1.m.s2 |
Pa-1 |
[Pressure]/([ΔVolume]/[Volume]). Inverse of bulk modulus |
| Compression |
kg.m-1.s-2 |
N.m-2, Pa (pascal) |
[Force]/[Area]. Same as pressure |
| Compression factor of a real gas |
1 |
Dimensionless |
pV/(nRT). For ideal gas equals 1; temperature dependent |
| Compressive strength |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Like pressure |
| Concentration, molar |
m-3.mol |
|
[Quantity]/[Volume]. Same as molar density |
| Concentration gradient, molar |
m-4.mol |
|
[Molarity]/[Distance]. Same as molarity gradient |
| Concentration ratio, molar |
1 |
Dimensionless |
[Partial quantity]/[Total quantity] |
| Concentration ratio, by mass |
1 |
Dimensionless |
[Partial mass]/[Total mass] |
| Concentration ratio, by volume |
1 |
Dimensionless |
[Partial volume]/[Total volume]. . |
| Concentration, by weight (obsolete) |
1 |
Dimensionless |
[Partial mass]/[Total mass]. Obsolete: use by mass |
| Conductance, electric |
kg-1.m-2.s3.A2 |
A.V-1, S (siemens) |
1/[Resistance] |
| Conductivity, electric |
kg-1.m-3.s3.A2 |
S.m-1 |
1/[Resistivity] |
| Conductivity, hydraulic |
m.s-1 |
m/s |
Used for porous media |
| Conductivity, molar |
kg-1.s3.A2.mol-1 |
S.m2.mol-1 |
[El.conductivity]/[Concentration] |
| Conductivity, thermal |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]) |
| Constringence | Abbé number | V-number |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
| Convergence |
m-1 |
dioptry |
in optics, but not only |
| Cosmological constant Λ |
m-2 |
|
Present in Einstein's equation |
| Cosmological expansion rate |
s-1 |
km/s/Mpc |
[Velocity]/[Distance]. Mpc stands for Megaparsec |
| Count of events/instances |
1 |
|
This covers all kinds of enumerations |
| Count rate |
s-1 |
|
[Counts]/[Time] |
| Couple |
kg.m2.s-2 |
N.m |
2*[Force]*[Distance] for two non-aligned opposing forces |
| Critical angle of repose |
rad |
or degree |
Steepest angle of a slope before a slide |
| Cross section |
m2 |
|
[Distance]*[Distance] |
| Cryoscopic constant |
kg.mol-1.K |
K/(mol/kg) |
[ΔTemperature]/[Molality] |
| Current, electric |
A |
A (ampere) |
|
| Current density, electric |
m-2.A |
|
[Current]/[Area]. Same as current intensity |
| Current intensity, electric |
m-2.A |
|
[Current]/[Area]. Same as current density |
| Current noise, variance nJ2 |
s.A2 |
A2/Hz |
[Current]2/[Bandwidth] |
| Curvature |
m-1 |
|
1/[Curvature radius] |
| Curvature radius |
m |
|
of a line in plane/space or surface in space |
| D: |
| D'Alembert operator | D'Alembertian |
m-2 |
|
(1/c2)∂2/∂t2 - ∂2/∂x2 - ∂2/∂y2 - ∂2/∂z2 |
| Debt | Liability |
cur |
currency |
Economy and finance |
| Debt/GDP ratio |
s |
year |
[Debt]/[Earnings]. Economy and finance |
| Deceleration | Acceleration |
m.s-2 |
|
[ΔVelocity]/[ΔTime] |
| Deceleration, angular |
s-2 |
rad.s-2 |
[ΔAngular velocity]/[ΔTime] |
| Density of electric charge |
m-3.s.A |
C.m-3 |
[Charge]/[Volume] |
| Density of electric current |
m-2.A |
|
[Current]/[Area]. Same as current intensity |
| Density of energy |
kg.m-1.s-2 |
J.m-3 |
[Energy]/[Volume] |
| Density of mass |
kg.m-3 |
|
[Mass]/[Volume]. Same as specific density |
| Density of mass, gradient of |
kg.m-4 |
|
[Mass density]/[Distance]. Same as specific density gradient |
| Density of particles |
m-3 |
|
[Count]/[Volume]. Obsolete: number density |
| Density of substance |
m-3.mol |
|
[Quantity]/[Volume]. Same as molar concentration |
| Derivative with respect to time |
s-1 |
|
d/dt, ∂/∂t |
| Derivative with respect to a length |
m-1 |
|
d/dr, ∂/∂r, r = x | y | z |
| Dielectric constant | Relative permittivity |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum] |
| Dielectric strength/rigidity | Electric strength |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
| Diffusion coefficient |
m2.s-1 |
|
[Distance]2/[Time] |
| Diffusivity, thermal |
m2.s-1 |
|
([∂Temperatute]/[∂Time])/[∇2Temperature]. |
| Dipole moment, electric |
m.s.A |
C.m |
[Charge]*[Distance] |
| Dipole moment, magnetic |
m2.A |
J.T-1 |
[Current]*[Area] |
| Dispersive power |
1 |
Dimensionless |
Ratio of differences of refractive indices |
| Dispersivity quotient |
m-1 |
|
[ΔRefractive index]/[ΔWavelength] |
| Displacement, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
| Displacement four-tensor (relativistic Dμν) |
m-1.A |
|
Like magnetic intensity |
| Distance |
m |
|
in all Euclidean n-dimensional spaces |
| Dose of absorbed radiation |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
| Dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
| Drift speed |
m.s-1 |
|
Steady-state speed of an object. . |
| Duration |
s |
s (second) |
|
| Dynamic viscosity |
kg.m-1.s-1 |
Pa.s |
([Force]/[Area])/[ΔVelocity] |
| E: |
| Earnings | Income rate |
cur.s-1 |
currency/year |
[Value]/[Time period]. Economy and finance |
| Ebullioscopic constant |
kg.mol-1.K |
K/(mol/kg) |
[ΔTemperature]/[Molality] |
| Electric capacitance |
kg-1.m-2.s4.A2 |
C.V-1, F (farad) |
[Charge]/[ΔPotential] |
| Electric charge |
s .A |
C (coulomb) |
[Current]*[Time] |
| Electric conductance |
kg-1.m-2.s3.A2 |
A.V-1, S (siemens) |
[Current]/[ΔPotential]. Inverse of resistance |
| Electric conductivity |
kg-1.m-3.s3.A2 |
S.m-1 |
1/[Resistivity] |
| Electric conductivity, molar |
kg-1.s3.A2.mol-1 |
S.m2.mol-1 |
[El.conductivity]/[Concentration] |
| Electric current |
A |
A (ampere) |
|
| Electric dipole moment |
m.s.A |
C.m |
[Charge]*[Distance] |
| Electric displacement |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
| Electric field strength | Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
| Electric field gradient |
kg.s-3.A-1 |
V.m-2 |
[ΔEl.field strength]/[Distance] |
| Electric flux density | Electric induction |
m-2.s.A |
C.m-2 |
[Charge]/[Area] |
| Electric inductance |
kg.m2.s-2.A-2 |
V.s.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt] |
| Electric induction |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. More properly electric flux density |
| Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. More properly electric field strength |
| Electric permittivity |
kg-1.m-3.s4.A2 |
F.m-1 |
[El.flux density]/[El.field strength] |
| Electric permittivity, relative |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Same as dielectric constant |
| Electric polarization |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Like electric flux density |
| Electric potential |
kg.m2.s-3.A-1 |
W.A-1, J.C-1, V (volt) |
[Power]/[Current], [Energy]/[Charge] |
| Electric quadrupole moment |
m2.s.A |
C.m2 |
[Electric dipole]*[Distance], [Electric charge]*[Distance2] |
| Electric resistance |
kg.m2.s-3.A-2 |
V.A-1, Ω (ohm) |
[ΔPotential]/[Current] |
| Electric resistivity |
kg.m3.s-3.A-2 |
Ω.m |
([Resistance]*[Length])/[Area] |
| Electric strength | Dielectric strength |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. . |
| Electromagnetic field tensor (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
| Electromagnetic displacement (relat. Dμν) |
m-1.A |
|
Like magnetic intensity |
| Electromagnetic four-current (relativistic Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
| Electromagnetic four-potential (relativistic Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
| Electromotive force (emf) |
kg.m2.s-3.A-1 |
V |
[ΔPotential] |
| Electron affinity (always molar) |
kg.m2.s-2.mol-1 |
J.mol-1 |
Energy released binding an electron |
| Electronegativity, Pauling χ |
1 |
Dimensionless |
Relative tendency of an atom to attract electrons; χ(H)=2.20. |
| Electrostriction coefficient |
kg-2.m-2.s6.A2 |
m2.V-2 |
([ΔVolume]/[Volume])/[Electric field strength]2 |
| Emittance, luminous |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area]. Same as luminous exitance |
| Energy |
kg.m2.s-2 |
N.m, J (joule) |
[Force]*[Distance], [Power]*[Time] |
| Energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
| Energy, specific |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
| Energy density |
kg.m-1.s-2 |
J.m-3 |
[Energy]/[Volume] |
| Energy flux | Power |
kg.m2.s-3 |
J.s-1, W (watt) |
[ΔEnergy]/[ΔTime] |
| Enthalpy |
kg.m2.s-2 |
J |
Like energy and heat |
| Enthalpy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Enthalpy]/[Quantity]. Like molar heat |
| Enthalpy, specific |
m2.s-2 |
J.kg-1 |
[Enthalpy]/[Mass]. Like specific heat |
| Entropy |
kg.m2.s-2.K-1 |
J.K-1 |
[ΔHeat]/[Temperature] |
| Entropy, molar |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Entropy]/[Quantity] |
| Entropy, specific |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Entropy]/[Mass] |
| Evolution rate, log-scale |
s-1 |
|
d{ln(Q)}/dt = (dQ/dt)/Q. Same as relative evolution rate |
| Expansion coefficient, thermal |
K-1 |
|
([ΔLength]/[Length])/[Temperature] |
| Expansion rate, cosmological |
s-1 |
km/s/Mpc |
[Velocity]/[Distance]. Mpc stands for Megaparsec |
| Expectation frequency |
s-1 |
|
[Counts]/[Time]. Like count rate |
| Exposure |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass]. Used for ionising radiations |
| Extinction coefficient |
m-1 |
dB/m |
[Ratio]/m. Used mostly for radiation |
| F: |
| Field tensor, electromagnetic (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
| Fire point |
K |
|
Temperature at which ignited vapour keeps burning |
| Flash point |
K |
|
Temperature at which vapour can be kept burning |
| Flow |
cur.s-1 |
currency/year |
[ΔValue]/[ΔTime]. Economy and finance: time derivative |
| Flow rate, of mass | Mass production rate |
kg.s-1 |
|
[ΔMass]/[Time]. For example, through a pipe |
| Flow rate, of volume |
m3.s-1 |
|
[ΔVolume]/[Time]. For example, through a pipe |
| Force |
kg.m.s-2 |
N (newton) |
[Mass]*[Acceleration] |
| Force, thermodynamic |
kg.m.s-2.mol-1 |
N/mol |
[ΔChemical potential]/[Distance] |
| Four-current (relativistic Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
| Four-potential (relativistic Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
| Four-tensor elmag displacement (relat. Dμν) |
m-1.A |
|
Like magnetic intensity |
| Four-tensor elmag field (relativistic Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
| Free energy |
kg.m2.s-2 |
J |
Also Helmholtz function. Like energy |
| Free energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free energy]/[Quantity]. Like Helmholtz function |
| Free energy, specific |
m2.s-2 |
J.kg-1 |
[Free energy]/[Mass]. Like specific Helmholtz function |
| Free enthalpy |
kg.m2.s-2 |
J |
Also Gibbs function. Like energy |
| Free enthalpy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free enthalpy]/[Quantity]. Like molar Gibbs function |
| Free enthalpy, specific |
m2.s-2 |
J.kg-1 |
[Free enthalpy]/[Mass]. Like specific Gibbs function |
| Frequency of events |
s-1 |
|
[Counts]/[Time] |
| Frequency of waves |
s-1 |
Hz |
hertz |
| Frequency drift rate |
s-2 |
Hz.s-1 |
[ΔFrequency]/[Time] |
| Friction |
kg.m.s-2 |
N |
Tangential force between two moving surfaces |
| Friction coefficient |
1 |
Dimensionless |
[Tangential force]/[Normal force] |
| Fugacity |
kg.m-1.s-2 |
Pa |
Effective pressure in real gases |
| G: |
| Gain of a device |
1 |
Dimensionless |
[Output]/[Input], like-quantities ratio. Often in dB |
| GDP Gross domestic product |
cur.s-1 |
currency/year |
[Earnings]. Economy and financee: of an administrative region |
| g-factor of a particle |
1 |
Dimensionless |
[Magnetic moment]/([Spin].[Bohr magneton]) |
| Gradient, of electric field |
kg.s-3.A-1 |
V.m-2 |
[ΔEl.field strength]/[Distance] |
| Gradient, of magnetic field |
kg.m-1.s-2.A-1 |
T.m-1 |
[ΔMag.flux density]/[Distance] |
| Gradient, of mass density |
kg.m-4 |
|
[Mass density]/[Distance]. Same as specific density gradient |
| Gradient, of pressure |
kg.m-2.s-2 |
N.m-3, Pa/m |
[Pressure]/[Distance] |
| Gradient, thermal |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as temperature gradient |
| Gravitational constant G |
kg-1.m3.s-2 |
|
[Force]*[Distance]2/[Mass]2. Appears in Newton's equation |
| Gravitational field intensity | Gravity |
m.s-2 |
|
[Force]/[Mass], [Acceleration] |
| Gravitational field potential |
m2.s-2 |
|
[Energy]/[Mass]. |
| Gravity | Gravitational field intensity |
m.s-2 |
|
[Force]/[Mass], [Acceleration] |
| Growth rate, relative |
s-1 |
|
[Relative variation]/[Time] |
| Growth rate, linear |
m.s-1 |
|
[ΔLength]/[Time] |
| Growth rate, of area/surface |
m2.s-1 |
|
[ΔArea]/[Time] |
| Growth rate, of volume |
m3.s-1 |
|
[ΔVolume]/[Time] |
| Gyromagnetic ratio |
kg-1.s.A |
Hz.T-1 |
[Mag.moment]/[Angular moment of motion] |
| H: |
| Half life |
s |
|
of a non-conservative / decaying quantity |
| Hamiltonian |
kg.m2.s-2 |
J |
[Force]*[Distance], [Power]*[Time]. Like energy |
| Hardness |
kg.m-1.s-2 |
N.m-2 |
[Force]/[Area]. Same as pressure |
| Heat |
kg.m2.s-2 |
J |
Like energy |
| Heat, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Heat]/[Quantity] |
| Heat, specific |
m2.s-2 |
J.kg-1 |
[Heat]/[Mass] |
| Heat capacity |
kg.m2.s-2.K-1 |
J.K-1 |
[ΔHeat]/[ΔTemperature] |
| Heat capacity, molar |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Heat capacity]/[Quantity] |
| Heat capacity, specific |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Heat capacity]/[Mass] |
| Heat conductivity | Thermal conductivity |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]) |
| Heat flux |
kg.m2.s-3 |
J.s, W |
[ΔHeat]/[ΔTime]. Like power |
| Heat flux density |
kg.s-3 |
W.m-2 |
[Heat flux]/[Area]. Same as irradiance |
| Heat of fusion/evaporation, specific |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
| Heat of fusion | evaporation, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
| Hydraulic conductivity |
m.s-1 |
m/s |
Used for porous media |
| Hydraulic permeability |
m2 |
1 darcy = 10-12 m2 |
[Velocity]*[Viscosity]/[Pressure gradient], in porous media |
| I: |
| Illuminance |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area] |
| Impact resistance |
kg.s-2 |
J.m-2 |
[Energy]/[Area] |
| Impedance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. resistance / reactance |
| Impedance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
| Impedance, characteristic, electric |
kg.m2.s-3.A-2 |
V.A-1, Ω, ohm |
√([Mag.Permeability]/[El.Permittivity]) |
| Impedance, inductive |
kg.m2.s-3.A-2 |
Ω (ohm) |
i[Angular frequency].[Inductance] |
| Impedance, of a circuit |
kg.m2.s-3.A-2 |
Ω (ohm) |
|
| Impulse |
kg.m.s-1 |
|
[ΔMoment of motion], [Force]*[ΔTime], [Mass]*[ΔVelocity] |
| Income rate | Earnings |
cur.s-1 |
currency/year |
[Value]/[Time period]. Economy and finance |
| Inductance |
kg.m2.s-2.A-2 |
V.s.A-1, Wb.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] |
| Induction, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Same as electric flux density |
| Inductive admittance |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Inductive impedance] |
| Inductive impedance |
kg.m2.s-3.A-2 |
Ω (ohm) |
i[Angular frequency].[Inductance] |
| Information |
bit-1 |
bit |
One bit is the elementary information quantum |
| Information flux | Baud rate |
bit.s-1 |
baud |
[Information]/[Time] |
| Intensity of electric current |
m-2.A |
|
[Current]/[Area]. Same as current density |
| Interest |
1 |
% |
[ΔWealth]/[Wealth]. Economy and finance |
| Interest rate |
s-1 |
%/year |
[Interest]/[Time period]. Economy and finance |
| Internal energy |
kg.m2.s-2 |
J |
Like energy and heat |
| Internal energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Internal energy]/[Quantity]. Like molar heat |
| Internal energy, specific |
m2.s-2 |
J.kg-1 |
[Internal energy]/[Mass]. Like specific heat |
| Ion mobility |
kg-1.m-1.s2.A |
m2.s-1.V-1 |
[Velocity]/[Electric field strength] . |
| Ionic force (strength) |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
| Ionic quantum charge |
1 |
Dimensionless |
[Ion charge]/[Elementary charge quantum] |
| Ionic strength (force) |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
| Ionization energy, molar |
kg.m2.s-2.mol-1 |
J.mol-1 |
Energy to ionize a molecule/atom |
| Irradiance |
kg.s-3 |
W.m-2 |
[Heat flux]/[Area]. Same as heat flux density |
| J: |
| Joule-Thomson coefficient |
kg-1.m.s2.K |
K.Pa-1 |
[ΔTemperature]/[ΔPressure] |
| K: |
| Katalytic activity |
mol.s-1 |
katal |
[ΔQuantity]/[Time]. Same as molar production rate |
| Kinematic viscosity |
m2.s-1 |
|
[Dynamic viscosity]/[Density] |
| K-space vector | Reciprocal space position |
m-1 |
|
|
| L: |
| Lagrangian |
kg.m2.s-2 |
J |
[Force]*[Distance], [Power]*[Time]. Like energy |
| Laplace operator | Laplacian |
m-2 |
|
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 |
| Length |
m |
m (meter) |
|
| Liability | Debt |
cur |
currency |
Economy and finance |
| Linear stiffness |
kg.s-2 |
N.m-1 |
[Force]/[Displacement]. ... of a structure |
| Logarithmic ratio logb(A/A') in any base b |
1 |
|
Applicable to any ratio of commensurable quantities |
| Logarithmic ratio ln(A/A') |
1 |
Np |
Neper. Uses natural logarithm |
| Logarithmic ratio Log(P/P')/10 |
1 |
dB (decibel) |
Uses base-10 logarithm. Aplies only to power P |
| Logarithmic ratio Log(X/X')/20 |
1 |
dB (decibel) |
Aplies to voltages (X=V) and currents (X=I) |
| Logarithmic scale differential |
1 |
Dimensionless |
dQ/Q, d{ln(Q)}, for any quantity Q. Also relative differential |
| Logarithmic scale probability density |
1 |
1/Np |
[Probability]/[Natural-logarithmic ratio] |
| Loss of a device |
1 |
Dimensionless |
[Output]/[Input], like-quantities ratio. Often in dB |
| Luminance |
cd.m-2 |
|
[Luminosity]/[Area] |
| Luminosity |
cd |
cd (candle) |
Same as luminous intensity |
| Luminous coefficient |
1 |
Dimensionless |
[Luminous efficacy]/[683 lm/W]. Same as luminous efficiency |
| Luminous efficacy |
cd.sr.kg-1.m-1.s3 |
lm/W |
[Luminous flux]/[Power] |
| Luminous efficiency |
1 |
Dimensionless |
[Luminous efficacy]/[683 lm/W]. Same as luminous coefficient |
| Luminous emittance |
cd.sr.m-2 |
lm.m-2, lx (lux) |
[Luminous flux]/[Area]. Same as luminous exitance |
| Luminous energy |
cd.sr.s |
lm.s |
[Luminous flux]*[Time]. Known as talbot |
| Luminous flux |
cd.sr |
lm (lumen) |
[Luminosity]*[Solid angle]. Same as luminous power |
| Luminous intensity |
cd |
cd (candle) |
Same as luminosity |
| Luminous power |
cd.sr |
lm (lumen) |
[Luminosity]*[Solid angle]. Same as luminous flux |
| M: |
| Magnetic charge (bound) |
m-2.A |
|
- ∇.[Magnetization] , -Divergence of magnetization |
| Magnetic dipole moment |
m2.A |
J.T-1 |
[Current]*[Area]. Same as magnetic moment |
| Magnetic field gradient |
kg.m-1.s-2.A-1 |
T.m-1 |
[ΔMag.flux density]/[Distance] |
| Magnetic field strength | Magnetic intensity |
m-1.A |
|
[Current]/[Distance] |
| Magnetic flux |
kg.m2.s-2.A-1 |
V.s, W.s.A-1, Wb (weber) |
[ΔPotential]*[Time], [Power]/[dCurrent/dt] |
| Magnetic flux density | Magnetic induction |
kg.s-2.A-1 |
Wb.m-2, T (tesla) |
[Mag.flux]/[Area] |
| Magnetic induction |
kg.s-2.A-1 |
Wb.m-2, T (tesla) |
[Mag.flux]/[Area]. More properly magnetic flux density |
| Magnetic intensity |
m-1.A |
|
[Current]/[Distance]. More properly magnetic field strength |
| Magnetic moment |
m2.A |
J.T-1 |
[Current]*[Area] |
| Magnetic permeability |
kg.m.s-2.A-2 |
H.m-1 |
[Mag.flux density]/[Mag.field strength] |
| Magnetic permeability, relative |
1 |
Dimensionless |
[Permeability]/[Permeability of vacuum] |
| Magnetic quadrupole moment |
m3.A |
m.J.T-1 |
[Mag.dipole]*[Distance] |
| Magnetic susceptibility |
1 |
Dimensionless |
[Relative permeability]-1 |
| Magnetic vector potential |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
[Mag.flux density]*[Distance], [El.field strength]*[Time] |
| Magnetization |
m-1.A |
|
[Mag.moment]/[Volume]. Like magnetic field strength |
| Magnetogyric ratio |
kg.s-1.A-1 |
T.Hz-1 |
[Angular moment of motion]/[Mag.moment] |
| Magnetomotive force (mmf) |
A |
|
[Current]*[Number of turns] |
| Magnitude of a star |
1 |
Dimensionless |
m-m'=-100.4(S/S'), where S,S' are the luminous fluxes of two stars |
| Mass |
kg |
kg (kilogram) |
|
| Mass density |
kg.m-3 |
|
[Mass]/[Volume]. Same as specific density |
| Mass density gradient | Specific density gradient |
kg.m-4 |
|
[Mass density]/[Distance] |
| Mass concentration |
1 |
Dimensionless |
[Partial mass]/[Total mass] |
| Mass flow (total) |
kg.s-1 |
kg |
[ΔMass]/[Time]. For example, through a device |
| Mass production rate |
kg.s-1 |
|
[ΔMass]/[Time]. Same as mass flow |
| Mass, molar |
kg.mol-1 |
|
[Mass]/[Quantity] |
| Mass number of an isotope |
1 |
Dimensionless |
Number of protons+neutrons in the isotope nuclide |
| Mean anomaly |
1 |
Dimensionless |
Of a body on a Kepler orbit; t.sqrt(G(M1+M2)/r3) |
| Mean motion |
s-1 |
|
Of a body on a Kepler orbit; sqrt(G(M1+M2)/r3) |
| Modulus of compression |
kg-1.m.s2 |
Pa-1 |
[Pressure]/([ΔVolume]/[Volume]). Same as compressibility |
| Modulus of rigidity |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Same as shear modulus |
| Mobility, ionic |
kg-1.m-1.s2.A |
m2.s-1.V-1 |
[Velocity]/[Electric field strength] . |
| Molality (intended as concentration) |
kg-1.mol |
mol/kg |
[Quantity]/[Mass] |
| Molar charge |
s.A.mol-1 |
C.mol-1 |
[Charge]/[Quantity] |
| Molar concentration |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration or molarity |
| Molar concentration gradient |
m-4.mol |
|
[Molarity]/[Distance]. Same as molarity gradient |
| Molar concentration ratio |
1 |
Dimensionless |
[Partial quantity]/[Total quantity] |
| Molar conductivity, electric |
kg-1.m-3.s3.A2.mol-1 |
S.m-1.mol-1 |
[El.conductivity]/[Concentration] |
| Molar density |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
| Molar energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Energy]/[Quantity] |
| Molar enthalpy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Enthalpy]/[Quantity]. Like molar heat |
| Molar entropy |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Entropy]/[Quantity] |
| Molar free energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free energy]/[Quantity]. Also molar Helmholtz function |
| Molar free enthalpy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Free enthalpy]/[Quantity]. Also molar Gibbs function |
| Molar heat |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Heat]/[Quantity] |
| Molar heat capacity |
kg.m2.s-2.K-1.mol-1 |
J.K-1.mol-1 |
[Heat capacity]/[Quantity] |
| Molar internal energy |
kg.m2.s-2.mol-1 |
J.mol-1 |
[Internal energy]/[Quantity]. Like molar heat |
| Molar mass |
kg.mol-1 |
|
[Mass]/[Quantity] |
| Molar particle count |
mol-1 |
|
[Count]/[Mol]. For example, the Avogadro constant |
| Molar production rate |
mol.s-1 |
|
[ΔQuantity]/[Time]. |
| Molar refractivity |
m3.mol-1 |
|
[(r2-1)/(r2+2)]/[Concentration], where r is the refractive index |
| Molar relaxivity |
s-1.mol-1 |
|
[Relaxation rate]/[Concentration] |
| Molar solubility |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
| Molar volume |
m3.mol-1 |
|
[Volume]/[Quantity] |
| Molarity |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration or molar density |
| Molarity gradient |
m-4.mol |
|
[Molarity]/[Distance]. Same as concentration gradient |
| Molecular quantum charge |
1 |
Dimensionless |
[Charge of a molecule]/[Elementary charge quantum] |
| Moment of force |
kg.m2.s-2 |
N.m |
[Force]*[Distance] |
| Moment of motion |
kg.m.s-1 |
|
[Mass]*[Velocity], [Mass flow]*[Distance] |
| Multiple derivatives with respect to time |
s-p |
|
dp/dtp, ∂p/∂tp; for p = 1,2,3,.. |
| Multiple derivatives with respect to a length |
m-p |
|
dp/drp, ∂p/∂rp; for p = 1,2,3,..., r = x | y | z |
| Mutual inductance |
kg.m2.s-2.A-2 |
V.s.A-1, Wb.A-1, H (henry) |
[ΔPotential]/[dCurrent/dt], [Mag.flux]/[Current] |
| N: |
| Nabla ( ∇ ) | div | grad | rot | curl |
m-1 |
|
Any derivative-like construct with respect to a distance |
| Notch resistance |
kg.s-2 |
J.m-2 |
[Energy]/[Area] |
| Number of instances / events |
1 |
|
This covers all kinds of enumerations |
| Number density |
m-3 |
|
[Particles]/[Volume]. Obsolete; see particle density |
| Number of turns |
1 |
|
Often used in electric engineering |
| O: |
| Osmotic pressure |
kg.m-1.s-2 |
Pa |
|
| P: |
| Particle count, molar |
mol-1 |
|
[Count]/[Mol]. For example, the Avogadro constant |
| Particle density |
m-3 |
|
[Count]/[Volume]. Obsolete: number density |
| P/E Price/Earnings ratio |
s |
year |
[Value]/[Earnings]. Economy and finance |
| Peltier coefficient |
kg.m2.s-3.A-1 |
W.A-1, V |
[Heat flux]/[Current] |
| Perimeter | Circumference |
m |
|
|
| Permeability, magnetic |
kg.m.s-2.A-2 |
H.m-1 |
[Mag.flux density]/[Mag.field strength] |
| Permeability, hydraulic |
m2 |
1 darcy = 10-12 m2 |
[Velocity]*[Viscosity]/[Pressure gradient], in porous media |
| Permittivity, electric |
kg-1.m-3.s4.A2 |
F.m-1 |
[El.flux density]/[El.field strength] |
| Permittivity, relative |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Dielectric constant |
| Phase | Phase angle |
1 |
rad |
φ typically in exp(i(ωt+φ)) |
| Phase drift rate |
s-1 |
rad.s-1 |
[Phase angle]/[Time] |
| Pi coefficient, molar |
kg.m-1.s-2.mol-1 |
J.m-3 |
[ΔInternalEnergy]/[ΔVolume] |
| Piezzoelectric coefficient |
kg.m.s-3.A-1 |
V.m-1 |
[Electric field strength]/([ΔLength]/[Length]) |
| Plane angle |
1 |
rad |
|
| Poisson's ratio |
1 |
Dimensionless |
[Transversal striction]/[Londitudinal elongation] |
| Polarization, electric |
m-2.s.A |
C.m-2 |
[Charge]/[Area]. Like electric flux density |
| Porosity, superficial |
1 |
Dimensionless |
[Void cross section]/[Total cross section], in porous media |
| Porosity, volume |
1 |
Dimensionless |
[Pores volume]/[Total volume], in porous media |
| Position vector |
m |
|
in all Euclidean n-dimensional spaces |
| Potential, electric |
kg.m2.s-3.A-1 |
W.A-1, J.C-1, V (volt) |
[Power]/[Current], [Energy]/[Charge] |
| Power |
kg.m2.s-3 |
J.s-1, W (watt) |
[ΔEnergy]/[ΔTime]. Equivalent to energy flux |
| Prandtl number |
1 |
Dimensionless |
[Kinematic viscosity]/[Thermal diffusivity] |
| Propagation loss |
m-1 |
dB/m |
[Ratio]/m. Generic, usable for any quantity |
| Poynting vector |
kg.s-3 |
W.m-2 |
[El.field strength]/[Mag.field strength]. Like irradiance |
| Pressure |
kg.m-1.s-2 |
N.m-2, Pa (pascal) |
[Force]/[Area] |
| Pressure gradient |
kg.m-2.s-2 |
N.m-3, Pa/m |
[Pressure]/[Distance] |
| Price | Value |
cur |
currency |
Economy and finance |
| Probability of an event |
1 |
|
Real number in a dimensionless interval [0,1] |
| Probability density on log-scale |
1 |
Np-1 |
[Probability]/[Natural-logarithmic ratio] |
| Purchase | Transaction value |
cur |
currency |
Economy and finance |
| Q: |
| Quadrupole moment, electric |
m2.s.A |
C.m2 |
[Electric dipole]*[Distance], [Electric charge]*[Distance2] |
| Quadrupole moment, magnetic |
m3.A |
m.J.T-1 |
[Mag.dipole]*[Distance] |
| Quantity of substance |
mol |
mol |
|
| Quantum charge |
1 |
Dimensionless |
[Charge]/[Elementary charge quantum] |
| Quantum charge, molecular or ionic |
1 |
Dimensionless |
[Molecule/ion charge]/[Charge quantum] |
| Quotient of dispersivity |
m-1 |
|
[ΔRefractive index]/[ΔWavelength] |
| R: |
| Radiance |
kg.s-3.sr-1 |
W.m-2.sr-1 |
([Power]/[Area])/[Solid angle] |
| Radiation dose |
m2.s-2 |
J.kg-1, Gy (gray) |
[Energy]/[Mass] |
| Radiation dose rate |
m2.s-3 |
Gy.s-1 |
[Absorbed dose]/[Time] |
| Radioactivity |
s-1 |
Bq (becquerel) |
[Counts]/[Time] |
| Radius of curvature |
m |
|
of a line in plane/space or surface in space |
| Rotational stiffness |
kg.m2.s-2.rad-1 |
N.m.rad-1 |
[Moment of force]/[Angle]. ... of a structure |
| Ratio of commensurable quantities |
1 |
Dimensionless |
Q1/Q2, with Q1 and Q2 having the same dimension |
| Reactance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. impedance / resistance |
| Reactance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. impedance / resistance |
| Reactance, capacitive |
kg.m2.s-3.A-2 |
Ω (ohm) |
1/(i[Angular frequency].[Capacitance]) |
| Reciprocal space position | K-space vector |
m-1 |
|
|
| Redox potential |
kg.m2.s-3.A-1 |
V (volt) |
Same as reduction potential |
| Reduction potential |
kg.m2.s-3.A-1 |
V (volt) |
Same as redox potential |
| Refractive index |
1 |
Dimensionless |
Light speeds ration (in a medium)/(in vacuum) |
| Refractivity, molar |
m3.mol-1 |
|
[(r2-1)/(r2+2)]/[Concentration] |
| Refractivity, specific |
m3.kg-1 |
|
[(r2-1)/(r2+2)]/[Specific density], |
| Relative atomic mass | Atomic weight |
au |
atomic units |
Average over a typical isotopic composition |
| Relative differential |
1 |
Dimensionless |
dQ/Q, d{ln(Q)}, for any quantity Q. Also log-scale differential |
| Relative evolution rate |
s-1 |
|
d{ln(Q)}/dt = (dQ/dt)/Q. Also log-scale evolution rate |
| Relative permeability, magnetic |
1 |
Dimensionless |
[Permeability]/[Permeability of vacuum] |
| Relative permittivity, electric |
1 |
Dimensionless |
[Permittivity]/[Permittivity of vacuum]. Dielectric constant |
| Relative variation |
1 |
Dimensionless |
ΔQ/Q, for any quantity Q |
| Relativistic displacement four-tensor (Dμν) |
m-1.A |
|
Like magnetic intensity |
| Relativistic electromagnetic field tensor (Fμν) |
kg.s-2.A-1 |
T |
Like magnetic flux density |
| Relativistic four-current (Jα) |
m-2.A |
|
Like current density and [Charge]*[c] |
| Relativistic four-potential (Aα) |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
Like magnetic vector potential and [El.potential]/[c] |
| Relaxation rate |
s-1 |
|
1/[Relaxation time]. Used for returns to equilibria |
| Relaxation time |
s |
|
Used for returns to equilibria |
| Relaxivity, molar |
s-1.mol-1 |
|
[Relaxation rate]/[Concentration] |
| Reluctance, magnetic |
kg-1.m-1.s2.A2 |
m.H-1 |
1/[Permeability] |
| Resistance, acoustic |
kg.m-4.s-1 |
Pa.s/m3, reyl/m2 |
[ΔPressure]/[Volume flow rate]. Also acu. impedance / reactance |
| Resistance, acoustic, specific |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. impedance / reactance |
| Resistance, electric |
kg.m2.s-3.A-2 |
V.A-1, Ω (ohm) |
[ΔPotential]/[Current] |
| Resistance, thermal |
kg-1.m-2.s3K |
K/W |
of a device. [ΔT]/[Power]. |
| Resistance to impact |
kg.s-2 |
J.m-2 |
[Energy]/[Area]. Like notch resistance |
| Resistivity, electric |
kg.m3.s-3.A-2 |
Ω.m |
([Resistance]*[Length])/[Area] |
| Return on asset / equity |
s-1 |
%/year |
([ΔValue]/[Value])/[Time period]. Economy and finance |
| Reynolds number |
1 |
Dimensionless |
[Velocity]*[length]/[Kinematic viscosity] |
| RF attenuation |
m-1 |
dB/m |
[Ratio]/m. Used mostly for radiation |
| S: |
| Sale | Transaction value |
cur |
currency |
Economy and finance |
| Sales flow | Transactions volume |
cur.s-1 |
|
[Value]/[Time period]. Economy and Finance |
| Seeback coefficient |
kg.m2.s-3.A-1.K-1 |
V.K-1 |
[ΔPotential]/[ΔTemperature]. Same as thermoelectric power |
| Self-diffusion coefficient |
m2.s-1 |
|
[Distance2]/[Time] |
| Settling rate |
s-1 |
typically dB/s |
[Ratio]/[ΔTime] |
| Settling time |
s |
typically dB/s |
Used to describe transient phenomena |
| Shear modulus |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Like Young modulus |
| Softening point |
K |
|
Temperature at which hardness drops below a level |
| Solid angle |
1 |
sr (steradian) |
|
| Solubility, molar |
m-3.mol |
|
[Quantity]/[Volume]. Same as concentration |
| Sonic attenuation |
m-1 |
dB/m |
[Power ratio]/m. Used in acoustics |
| Specific acoustic impedance |
kg.m-2.s-1 |
Pa.s/m , reyl |
[ΔPressure]*[Velocity]. Also s.acu. resistance / reactance |
| Specific acoustic conductance |
kg-1.m2.s |
reyl-1 |
Also specific acoustic susceptance |
| Specific charge |
kg-1.s.A |
C.kg-1 |
[Charge]/[Mass]. Charge/mass ratio |
| Specific density |
kg.m-3 |
|
[Mass]/[Volume]. Same as density of mass |
| Specific density gradient |
kg.m-4 |
|
[Mass density]/[Distance]. Same as mass density gradient |
| Specific energy |
m2.s-2 |
J.kg-1 |
[Energy]/[Mass] |
| Specific enthalpy |
m2.s-2 |
J.kg-1 |
[Enthalpy]/[Mass]. Like specific heat |
| Specific entropy |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Entropy]/[Mass] |
| Specific free energy |
m2.s-2 |
J.kg-1 |
[Free energy]/[Mass]. Also specific Helmholtz function |
| Specific free enthalpy |
m2.s-2 |
J.kg-1 |
[Free enthalpy]/[Mass]. Also specific Gibbs function |
| Specific heat |
m2.s-2 |
J.kg-1 |
[Heat]/[Mass] |
| Specific heat capacity |
m2.s-2.K-1 |
J.K-1.kg-1 |
[Heat capacity]/[Mass] |
| Specific internal energy |
m2.s-2 |
J.kg-1 |
[Internal energy]/[Mass]. Like specific heat |
| Specific refractivity |
m3.kg-1 |
|
[(r2-1)/(r2+2)]/[Specific density] |
| Specific volume |
m3.kg-1 |
|
[Volume]/[Mass] |
| Speed |
m.s-1 |
|
[Distance]/[Time]. Same as velocity |
| Spin |
1 |
Dimensionless |
of a quantum particle |
| Star magnitude |
1 |
Dimensionless |
m-m' = -100.4(S/S'), where S,S' are luminous fluxes of two stars |
| Stiffness, linear |
kg.s-2 |
N.m-1 |
[Force]/[Displacement]. ... of a structure |
| Stiffness, rotational |
kg.m2.s-2.rad-1 |
N.m.rad-1 |
[Moment of force]/[Angle]. ... of a structure |
| Strain (mechanical) |
1 |
Dimensionless |
[ΔLength]/[Length] Relative deformation |
| Strain point |
K |
|
Temperature at which viscosity drops below 1013.5 Pa.s |
| Strength, compressive |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Like pressure |
| Strength, dielectric |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance]. Same as electric strength |
| Strength, electric field | Electric intensity |
kg.m.s-3.A-1 |
V.m-1 |
[ΔPotential]/[Distance] |
| Strength, ionic |
m-3.mol |
|
Sum([Concentration]*[Ionic quantum charge]2). |
| Strength, magnetic field | Magnetic intensity |
m-1.A |
|
[Current]/[Distance] |
| Strength, tensile |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Same as pressure |
| Superficial porosity |
1 |
Dimensionless |
[Void cross section]/[Total cross section], in porous media |
| Superficial velocity |
m.s-1 |
m/s |
In porous media; as if the space was filled only by the fluid |
| Surface area |
m2 |
|
[Distance]*[Distance]. Applicable to 3D bodies |
| Surface density of charge |
m-2.s.A |
C.m-2 |
[Charge]/[Area] |
| Surface element |
m2 |
|
[Distance]*[Distance]. Same as area |
| Surface energy |
kg.s-2 |
J/m2 |
[Energy]/[Area]. Same as surface tension |
| Surface growth rate |
m2.s-1 |
|
[ΔArea]/[Time] |
| Surface tension |
kg.s-2 |
N/m |
[Force]/[Length]. Same as surface energy |
| Susceptance, acoustic, specific |
kg-1.m2.s |
reyl-1 |
Also specific acoustic conductance |
| Susceptance, capacitive |
kg-1.m-2.s3.A2 |
S (siemens) |
1/[Reactance] |
| Susceptibility, magnetic |
1 |
Dimensionless |
[Relative permeability]-1 |
| Stress |
kg.m-1.s-2 |
Pa, N.m-2 |
[Force]/[Area]. Same as pressure |
| T: |
| Temperature |
K |
K (kelvin) |
|
| Temperature gradient |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as thermal gradient |
| Tensile strength |
kg.m-1.s-2 |
N.m-2, Pa |
[Force]/[Area]. Same as pressure |
| Tension |
kg.m-1.s-2 |
Pa, N.m-2 |
[Force]/[Area]. Like pressure |
| Thermal conductivity |
kg.m.s-3.K-1 |
W.m-1.K-1 |
[Heat flux]/([Distance]*[ΔTemperature]). Same as heat conductivity |
| Thermal diffusivity |
m2.s-1 |
|
([∂Temperatute]/[∂Time])/[∇2Temperature]. |
| Thermal expansion coefficient |
K-1 |
|
([ΔLength]/[Length])/[Temperature] |
| Thermal gradient |
K.m-1 |
|
[ΔTemperature]/[Distance]. Same as temperature gradient |
| Thermal resistance |
kg-1.m-2.s3K |
K/W |
of a device. [ΔT]/[Power]. |
| Thermodynamic force |
kg.m.s-2.mol-1 |
N/mol |
[ΔChemical potential]/[Distance] |
| Thermoelectric power | Thermopower |
kg.m2.s-3.A-1.K-1 |
V.K-1 |
[ΔPotential]/[ΔTemperature]. Same as Seeback coefficient |
| Thickness |
m |
|
usually referred to planar structures |
| Thomson coefficient |
kg.m2.s-3.A-1.K-1 |
W.K-1.A-1 |
[Heat flux]/([ΔTemperature]*[Current]) |
| Time |
s |
s (second) |
|
| Torque | Moment of force |
kg.m2.s-2 |
N.m |
[Force]*[Distance] |
| Traction |
kg.m.s-2 |
N (newton) |
Maximum tangential force before slipping |
| Traction coefficient |
1 |
Dimensionless |
[Traction]/[Weight] |
| Transaction value | Sale | Purchase |
cur |
currency |
Economy and finance |
| Transactions count |
1 |
Dimensionless |
Economy and finance |
| Transactions rate | Activity |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
| Transactions volume | Sales flow |
cur.s-1 |
|
[Value]/[Time period]. Economy and Finance |
| Transmission loss |
m-1 |
dB/m |
[Ratio]/m. Generic, usable for any quantity |
| U: |
| V: |
| V-number | Abbé number | Constringence |
1 |
Dimensionless |
VD = (nD-1)/(nF-nC) |
| Value | Price |
cur |
currency |
Economy and finance |
| van der Waals constant: a |
kg.m5.s-2.mol-2 |
Pa.m6 |
a in (p+a/V2)(V-b)=RT, where V is molar volume |
| van der Waals constant: b |
m3.mol-1 |
|
b in (p+a/V2)(V-b)=RT, where V is molar volume |
| Variance of current noise nJ2 |
s.A2 |
A2/Hz |
[Current]2/[Bandwidth] |
| Variance of voltage noise nV2 |
kg2.m4.s-5.A-2 |
V2/Hz |
[Voltage]2/[Bandwidth] |
| Vector potential, magnetic |
kg.m.s-2.A-1 |
m-1.s.V, m.T |
[Mag.flux density]*[Distance], [El.field strength]*[Time] |
| Velocity |
m.s-1 |
m/s |
[Distance]/[Time]. Same as speed |
| Velocity, advection |
m.s-1 |
m/s |
In porous media; actual progress along pressure gradient |
| Velocity, of money (circulation) |
s-1 |
1/year |
[Transactions]/[Time period]. Economy and finance |
| Velocity, superficial |
m.s-1 |
m/s |
In porous media; as if the space was filled only by the fluid |
| Verdet constant |
kg-1.m-1.s2.A1 |
rad.m-1.T-1 |
([Angle]/[Length])/[Magnetic flux density] |
| Virial coefficient: second |
m3.mol-1 |
|
B in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
| Virial coefficient: third |
m6.mol-2 |
|
C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
| Virial coefficient: fourth |
m9.mol-3 |
|
C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+... |
| Viscosity, dynamic |
kg.m-1.s-1 |
Pa.s |
([Force]/[Area])/[ΔVelocity] |
| Viscosity, kinematic |
m2.s-1 |
|
[Dynamic viscosity]/[Density] |
| Voltage | Electromotive force |
kg.m2.s-3.A-1 |
V |
[ΔPotential] |
| Voltage noise, variance nV2 |
kg2.m4.s-5.A-2 |
V2/Hz |
[Voltage]2/[Bandwidth] |
| Volume |
m3 |
|
[Area]*[Distance] |
| Volume concentration |
1 |
Dimensionless |
[Partial volume]/[Total volume] |
| Volume flow |
m3.s-1 |
|
[Volume]/[Time]. For example, through a device |
| Volume growth rate |
m3.s-1 |
|
[Volume]/[Time]. For example, of a crystal |
| Volume porosity |
1 |
Dimensionless |
[Pores volume]/[Total volume], in porous media |
| W: |
| Wave function for N particles (quantum) |
m-3N/2 |
tentative |
|ψ|2dτN is a dimensionless probability element. |
| Wavelength |
m |
|
[Wave velocity]/[Frequency] |
| Wavenumber |
m-1 |
|
[Number of waves]/[Distance] |
| Wealth | Asset |
cur |
currency |
Economy and finance |
| Work function |
kg.m2.s-2 |
J, eV |
[Energy] needed to remove an electron |
| X: |
| Y: |
| Young modulus |
kg.m-1.s-2 |
N.m-2, Pa |
[Stress]/[Strain]. Like shear modulus |
| Z: |