Basic mathematical constants
|
Zero, One, and i |
0, 1, √(-1), respectively |
Can anything be more basic than these two? (Oops, three!) |
π, Archimedes' constant |
3.141 592 653 589 793 238 462 643 ••• #t |
Circumference of a disk with unit diameter. |
e, Euler number, Napier's constant |
2.718 281 828 459 045 235 360 287 ••• #t |
Base of natural logarithms. |
γ, Euler-Mascheroni constant |
0.577 215 664 901 532 860 606 512 ••• |
Ln→∞{(1+1/2+1/3+...1/n) - log(n)} |
√2, Pythagora's constant |
1.414 213 562 373 095 048 801 688 ••• |
Diagonal of a square with unit side. |
Φ, Golden ratio |
1.618 033 988 749 894 848 204 586 ••• |
Φ = (1+√5)/2 = 2.cos(π/5). Diagonal of a unit-side pentagon. |
φ, inverse golden ratio 1/Φ = Φ -1 =(1-φ)/φ |
0.618 033 988 749 894 848 204 586 ••• |
Also φ = (√5 - 1)/2 = √(2-√(2+√(2-√(2+ ... )))) |
δs, Silver ratio | Silver mean |
2.414 213 562 373 095 048 801 688 ••• |
δs = 1+√2. One of the silver means (n+sqrt(n2+1))/2 |
Plastic number ρ (or silver constant) |
1.324 717 957 244 746 025 960 908 ••• |
Real root of x3 = x + 1. Attractor of M(#)=(1+#)1/3. |
Transfinite numbers, infinity cardinalities: |
Aleph0 ≡ Beth0, often denoted as ∞ |
ℵ0 ≡ ℶ0 |
Cardinality of the set of natural numbers. |
Beth1, ℶ1 ≡ 𝔠, cardinality of continuum |
𝔠 = 2^ℶ0 > ℶ0 |
Cardinality of the set of real numbers. |
Beth2, ℶ2 |
In general, ℶk+1 = 2^ℶk > ℶk; |
Cardinality of the power set of real numbers. |
Aleph1 |
ℵ1 ≤ ℶ1, depending on axioms |
The smallest cardinal number sharply greater than ℵ0. |
Constants derived from the basic ones |
Spin-offs of zero. 00 = 1 is the number of mappings of an empty set into itself (the identity). Hence, "1" might be viewed as a spin-off of "0". There is only one zero! |
Spin-offs of one. The best known are the natural numbers (iterated sums of 1's) and the golden ratio, via its continued fraction Φ = 1+1/(1+1/(1+1/( ... ))) |
Φ = √(1+√(1+√(1+√(1+...)))); golden ratio again! |
1.618 033 988 749 894 848 204 586 ••• |
Attractor of the mapping M1(#)=√(1+#) in C |
√(1+√(0+√(1+√(0+...)))) ≡ √(1+√√(1+√√(1+√...))) |
1.490 216 120 099 953 648 116 386 ... |
Attractor of the mapping M10(#)=√(1+√(#)) in C |
√(1+√√√(1+√√√(1+√√...))) |
1.448 095 838 609 641 132 583 869 ... |
Attractor of the mapping M100(#)=√(1+√(√(#))) in C |
√(-1+√(1+√(-1+√(1+...)))) |
0.453 397 651 516 403 767 644 746 ••• |
Attractor of the mapping M(#)=√(-1+√(1+#)) in C |
√(1+√(-1+√(1+√(-1+...)))) |
1.205 569 430 400 590 311 702 028 ••• |
Attractor of the mapping M(#)=√(1+√(-1+#)) in C |
Spin-offs of the imaginary unit i. Formally, i is a solution of z2 = -1 and of z = e zπ/2. Hence, for any integer k, i 2k = (-1)k and, for any z, i 4k+z = i z |
i i = e-π/2 |
0.207 879 576 350 761 908 546 955 ••• #t |
the imaginary unit elevated to itself ... is real |
i-i = (-1)-i/2 = eπ/2 |
4.810 477 380 965 351 655 473 035 ••• #t |
Inverse of the above. Square root of Gelfond's constant. |
log(i) / i = π/2 |
1.570 796 326 794 896 619 231 321 ••• #t |
Imaginary part of log(log(-1)) |
i ! = Γ(1+i) = i*Γ(i) (see Gamma function) |
0.498 015 668 118 356 042 713 691 ••• |
- i 0.154 949 828 301 810 685 124 955 ••• |
| i ! |, absolute value of the above |
0.521 564 046 864 939 841 158 180 ••• |
arg( i ! ) = - 0.301 640 320 467 533 197 887 531 ••• rad |
i^i^i^... infinite power tower of i; solution of z = i z |
0.438 282 936 727 032 111 626 975 ••• |
+i 0.360 592 471 871 385 485 952 940 ••• |
| i^i^i^... |, absolute value of the above |
0.567 555 163 306 957 825 384 613 ••• |
arg( i^i^i^... ) = 0.688 453 227 107 702 130 498 767 ••• rad |
Continued fraction c(i) = i/( i+i/( i+i/( ...))) |
0.624 810 533 843 826 586 879 804 ••• |
+i 0.300 242 590 220 120 419 158 909 ••• attractor of i/(i+#) |
Continued fraction f(i) = i/(1+i/(1+i/(...))) |
0.300 242 590 220 120 419 158 909 ••• |
+i 0.624 810 533 843 826 586 879 804 ••• attractor of i/(1+#) |
Shared modulus |c(i)| = |f(i)| |
0.693 205 464 623 797 320 434 363 ••• |
Note that i/(1+i/(1+i/(...))) = i*conjugate[ i/( i+i/( i+i/( ...)))] |
Infinite nested radical r(i) = √(i+√(i+√(i+ ... ))) |
1.300 242 590 220 120 419 158 909 ••• |
+i 0.624 810 533 843 826 586 879 804 ••• (note: r(i) = 1+f(i)) |
Modulus |√(i+√(i+√(i+ ... )))| of r(i) |
1.442 573 740 446 059 678 174 681 ... |
r(i) is an attractor of the mapping M(#) = sqrt(i+#) |
Infinite nested power p+(i) = (i+(i+(i+ ... )i)i)i |
0.269 293 437 169 311 227 190 868 ••• |
+i 0.012 576 454 573 863 832 381 561 ••• |
Modulus |(i+(i+(i+ ... )i)i)i| of p+(i) |
0.269 586 947 963 194 676 106 659 ... |
p+(i) is an attractor of the mapping M(#) = (i+#)i |
Infinite nested power p-(i) = (i+(i+(i+ ... )-i)-i)-i |
1.339 209 168 529 111 968 359 269 ••• |
-i 0.5 (exact) ... p-(i) is the invariant point of M(#)=(i+#)-i |
Modulus |(i+(i+(i+ ... )-i)-i)-i| of p-(i) |
1.429 503 828 981 383 114 270 109 ... |
p-(i) is also an attractor of the mapping M'(#) = ( # + (i+#)-i )/2 |
De Moivre numbers ei2πk/n |
cos(2πk/n) + i.sin(2πk/n) |
for any integer k and n≠0. |
Roots of i, up to a term of 4k in the exponent (like i4k+1/4 = i1/4, with any integer k): |
i1/2 = √i = (1 + i)/√2 = cos(π/4) + i.sin(π/4) |
0.707 106 781 186 547 524 400 844 ••• |
+i 0.707 106 781 186 547 524 400 844 ••• |
i1/3 = (√3 + i)/2 = cos(π/6) + i.sin(π/6) |
0.866 025 403 784 438 646 763 723 ••• |
+i 0.5 |
i1/4 = cos(π/8) + i.sin(π/8) |
0.923 879 532 511 286 756 128 183 ••• |
+i 0.382 683 432 365 089 771 728 459 ••• |
i1/5 = cos(π/10) + i.sin(π/10) |
0.951 056 516 295 153 572 116 439 ••• |
+i 0.309 016 994 374 947 424 102 293 ••• |
i1/6 = cos(π/12) + i.sin(π/12) |
0.965 925 826 289 068 2867 497 431 ••• |
+i 0.258 819 045 102 520 762 348 898 ••• |
i1/7 = cos(π/14) + i.sin(π/14) |
0.974 927 912 181 823 607 018 131 ••• |
+i 0.222 520 933 956 314 404 288 902 ••• |
i1/8 = cos(π/16) + i.sin(π/16) |
0.980 785 280 403 230 449 126 182 ••• |
+i 0.195 090 322 016 128 267 848 284 ••• |
i1/9 = cos(π/18) + i.sin(π/18) |
0.984 807 753 012 208 059 366 743 ••• |
+i 0.173 648 177 666 930 348 851 716 ••• |
i1/10 = cos(π/20) + i.sin(π/20) |
0.987 688 340 595 137 726 190 040 ••• |
+i 0.156 434 465 040 230 869 010 105 ••• |
One and i spin-offs |
(1+(1+(1+...)^i)^i)^i, attractor, in C, of M(#)=(1+#)i |
0.673 881 331 107 875 515 780 231 ••• |
+i 0.407 563 930 545 621 844 739 663 ••• |
| (1+(1+(1+...)^i)^i)^i | |
0.787 543 272 396 837 010 967 660 ••• |
Absolute value of the above complex number |
Means of 1 and i: Harmonic HM(1,i)=1+i, Geometric GM(1,i)=(1+i)/√2, Arithmetic AM(1,i)=(1+i)/2, Quadratic RMS(1,i)=0, Lehmer L2(1,i)=0 |
AGM(1,i)/(1+i) = second Lemniscate constant |
0.599 070 117 367 796 103 337 484 ••• |
where AGM is the Arithmetic-Geometric Mean |
π spin-offs. log(-1) = π.i, log(log(-1)) = log(π)+(π/2).i |
2π |
6.283 185 307 179 586 476 925 286 ••• #t |
1/π = 0.318 309 886 183 790 671 537 767 ••• #t |
2/π, Buffon's constant |
0.636 619 772 367 581 343 075 535 ••• #t |
π2*(π/2-1) = 5.633 533 939 060 551 468 903 666 ••• |
π2 |
9.869 604 401 089 358 618 834 490 ••• #t |
1/π2 = 0.101 321 183 642 337 771 443 879 ••• #t |
√π = Geometric mean GM(1,π) |
1.772 453 850 905 516 027 298 167 ••• #t |
1/√π = 0.564 189 583 547 756 286 948 079 ••• #t |
log(2π)/2 = ζ'(0) |
0.918 938 533 204 672 741 780 329 ••• |
= Ix=a,a+1{log(Γ(x)} + a - a.log(a). Raabe formula. |
log(π) = real part of log(log(-1)) |
1.144 729 885 849 400 174 143 427 ••• |
Log10(π) = 0.497 149 872 694 133 854 351 268 ••• |
log(π).π |
3.596 274 999 729 158 198 086 001 ••• |
log(π)/π = 0.364 378 839 675 906 257 049 587 ••• |
ππ |
36.462 159 607 207 911 770 990 826 ••• |
π-π = 0.027 425 693 123 298 106 119 556 ••• |
π1/π |
1.439 619 495 847 590 688 336 490 ••• |
π-1/π = 0.694 627 992 246 826 153 124 383 ••• |
Infinite power tower of 1/π |
0.539 343 498 862 301 208 060 795 ••• |
(1/π)^(1/π)^(1/π)^...; also solution of x = π-x |
Infinite nested radical √(π+√(π+√(π+ ...))) |
2.341 627 718 511 478 431 766 586 ••• |
= (1+sqrt(1+4π))/2 |
Means of 1 and π (for Geometric GM(1,π) = √π, see above) |
Harmonic HM(1,π) |
1.517 093 985 989 552 290 688 861 ••• |
2*π/(1+π) |
Arithmetic-Geometric AGM(1,π) |
1.918 724 665 977 634 529 660 378 ••• |
|
Arithmetic AM(1,π) |
2.070 796 326 794 896 619 231 321 ••• |
(1+π)/2 |
Quadratic RMS(1,π) |
2.331 266 222 580 484 116 215 253 ••• |
sqrt((1+π2)/2), the root-mean-square. |
Lehmer mean L2(1,π) |
2.624 498 667 600 240 947 773 782 ... |
(1+π2)/(1+π) |
Complex valued spin-offs, with the imaginary part in the last column: |
π±i = cos(log(π)) ± i.sin(log(π)) |
0.413 292 116 101 594 336 626 628 ••• |
±i 0.910 598 499 212 614 707 060 044 ••• |
i π = cos(π2/2) + i.sin(π2/2) |
0.220 584 040 749 698 088 668 945 ••• |
- i 0.975 367 972 083 631 385 157 482 ••• |
π±iπ = cos(π.log(π)) ± i.sin(π.log(π)) |
-0.898 400 579 757 743 645 668 580 ••• |
±i -0.439 176 955 555 445 894 369 454 ••• |
π±i/π = cos(log(π)/π) ± i.sin(log(π)/π) |
0.934 345 303 678 637 694 262 240 ••• |
±i 0.356 368 985 033 313 899 907 691 ••• |
Continued fraction i/(π+i/(π+i/(...))) |
0.030 725 404 776 448 575 790 859 ••• |
+i 0.312 203 069 208 072 004 947 893 ••• |
e spin-offs. Note that e = Sk=0,∞{1/k!} = Lk&arr;∞{(1+1/k)k} = (e1/e)^(e1/e)^(e1/e)^... (power tower of e1/e) |
2e |
5.436 563 656 918 090 470 720 574 ••• #t |
1/e = 0.367 879 441 171 442 321 595 523 ••• #t |
e2, conic constant, Schwarzschild constant |
7.389 056 098 930 650 227 230 427 ••• #t |
e-2 = 0.135 335 283 236 612 691 893 999 ••• #t |
√e |
1.648 721 270 700 128 146 848 650 ••• #t |
1/√e = 0.606 530 659 712 633 423 603 799 ••• #t |
ee |
15.154 262 241 479 264 189 760 430 ••• |
e-e = 0.065 988 035 845 312 537 0767 901 ••• |
e1/e |
1.444 667 861 009 766 133 658 339 ••• #t |
e-1/e = 0.692 200 627 555 346 353 865 421 ••• #t |
Infinite power tower of 1/e (Omega constant) |
0.567 143 290 409 783 872 999 968 ••• |
(1/e)^(1/e)^(1/e)^... Also solution of x = e-x and Lambert W0(1) |
Infinite nested radical √(e+√(e+√(e+ ...))) |
2.222 870 229 721 044 670 695 387 ••• |
= (1+sqrt(1+4e))/2 |
Ramanujan number: 262537412640768743 + |
0.999 999 999 999 250 072 597 198 ••• |
exp(π√163). Closest approach of exp(π√n) to an integer. |
Means of 1 and e (for Geometric GM(1,e) = √e, see above) |
Harmonic HM(1,e) |
1.462 117 157 260 009 758 502 318 ... |
2*e/(1+e) |
Arithmetic-Geometric AGM(1,e) |
1.752 351 558 081 080 826 714 086 ••• |
|
Arithmetic AM(1,e) |
1.859 140 914 229 522 617 680 143 ... |
(1+e)/2 |
Quadratic RMS(1,e) |
2.048 054 698 846 035 487 304 997 ... |
sqrt((1+e2)/2), the root-mean-square |
Lehmer mean L2(1,e) |
2.256 164 671 199 035 476 857 968 ... |
(1+e2)/(1+e) |
Complex valued, with the imaginary part in the last column: |
e±ie = cos(e) ± i.sin(e) |
- 0.911 733 914 786 965 097 893 717 ••• |
±i 0.410 781 290 502 908 695 476 009 ••• |
ie = cos(eπ/2) ± i.sin(eπ/2) |
-0.428 219 773 413 827 753 760 262 ••• |
±i -0.903 674 623 776 395 536 600 853 ••• |
e±i/e = cos(1/e) ± i.sin(1/e) |
0.933 092 075 598 208 563 540 410 ••• |
±i 0.359 637 565 412 495 577 0382 503 ••• |
Continued fraction i/(e+i/(e+i/(...))) |
0.045 820 234 137 835 028 060 158 ••• |
+i 0.355 881 727 107 562 782 631 319 ••• |
e and π combinations, except trivial ones like, for any integer k, eiπk = (-1)k, cosh(iπk) = (-1)k, sinh(iπk) = 0 |
eπ |
8.539 734 222 673 567 065 463 550 ••• |
√(eπ) = 2.922 282 365 322 277 864 541 623 ••• |
e/π |
0.865 255 979 432 265 087 217 774 ••• |
π/e = 1.155 727 349 790 921 717 910 093 ••• |
√(π/e) |
1.075 047 603 499 920 238 722 755 ••• |
I-∞,+∞{exp(-x2)*cos(x√2)} |
√(π/√e) |
1.380 388 447 043 142 974 773 415 ••• |
I-∞,+∞{exp(-x2)*cos(x)} |
eπ = (-1)-i, Gelfond's constant |
23.140 692 632 779 269 005 729 086 ••• #t |
e-π = 0.043 213 918 263 772 249 774 417 ••• #t |
πe |
22.459 157 718 361 045 473 427 152 ••• #t |
π-e = 0.044 525 267 266 922 906 151 352 ••• #t |
e1/π |
1.374 802 227 439 358 631 782 821 ••• |
e-1/π = 0.727 377 349 295 216 469 724 148 ... |
π1/e |
1.523 671 054 858 931 718 386 285 ••• |
π-1/e = 0.656 309 639 020 204 707 493 834 ••• |
sinh(π)/π = (eπ-e-π)/2π |
3.676 077 910 374 977 720 695 697 ••• |
Pn>0{1+1/n2)} |
Infinite power tower of e/π |
0.880 367 778 981 734 621 826 749 ••• |
Solution of x = (e/π)x |
Infinite power tower of π/e |
1.187 523 635 359 249 905 438 407 ••• |
Solution of x = (π/e)x |
Continued fraction e/(π+e/(π+e/(...))) |
0.706 413 134 087 300 069 274 143 ••• |
Solution of x(x+π)=e;. Attractor of the mapping M(#)=e/(π+#) |
Continued fraction π/(e+π/(e+π/(...))) |
0.874 433 950 941 209 866 417 966 ••• |
Solution of x(x+e)=π. Attractor of the mapping M(#)=π/(e+#) |
Arithmetic-Geometric mean AGM(e,π) |
2.926 108 551 572 304 696 665 895 ••• |
|
e±i/π = cos(1/π) ± i.sin(1/π) |
0.949 765 715 381 638 659 994 406 ••• |
±i 0.312 961 796 207 786 590 745 276 ••• |
γ spin-offs and some e and γ combinations |
2γ |
1.154 431 329 803 065 721 213 024 ... |
1/γ = 1.732 454 714 600 633 473 583 025 ••• |
log(γ) |
-0.549 539 312 981 644 822 337 661 ••• |
Log(γ) = -0.238 661 891 216 832 389 460 288 ... |
γ+log(π) |
1.721 945 550 750 933 034 749 939 ... |
= Ci(πz)+Cin(πz)-log(z); Ci, Cin being cosine integrals |
eγ |
1.569 034 853 003 742 285 079 907 ••• |
e/γ = 4.709 300 169 327 103 330 744 143 ••• |
eγ |
1.781 072 417 990 197 985 236 504 ••• |
Ln→∞{Pk=1,n{(1-1/prime(k))-1}/log(prime(n))} |
e-γ |
0.561 459 483 566 885 169 824 143 ••• |
Ln→∞{φ(n)*log(log(n))/n}, φ(n) being the Euler totient |
Infinite power tower of γ |
0.685 947 035 167 428 481 875 735 ••• |
γ^γ^γ^...; solution of x = γx |
Infinite nested radical √(γ+√(γ+√(γ+ ...))) |
1.409 513 971 801 166 373 157 694 ... |
= (1+sqrt(1+4γ))/2 |
Arithmetic-Geometric mean AGM(1,γ) |
0.774 110 217 793 039 338 108 461 ... |
|
ζ(2)/eγ = π2/(6*eγ) |
0.923 563 831 674 181 382 323 509 ••• |
Ln→∞{log(prime(n))*Pk=1,n{(1+1/prime(k))-1}} |
e±iγ = cos(γ) ± i sin(γ) |
0.837 985 287 880 196 539 954 992 ••• |
±i 0.545 692 823 203 992 788 157 356 ••• |
Golden ratio spin-offs and combinations. Note that Φ = 1+1/(1+1/(1+1/(1+ ... ))) = √(1+√(1+√(1+ ...))) can be viewed as a spin-off of 1. |
Complex golden ratio Φc = 2.eiπ/5 |
1.618 033 988 749 894 848 204 586 ••• |
+i 1.175 570 504 584 946 258 337 411 ••• |
Associate of Φ = imaginary part of Φc |
1.175 570 504 584 946 258 337 411 ••• |
2.sin(π/5), while Φ = 2.cos(π/5) = real part of Φc |
Square root of Φ |
1.272 019 649 514 068 964 252 422 ••• |
√Φ; ratio of the sides of squares with golden-ratio areas. |
Square root of the inverse φ |
0.786 151 377 757 423 286 069 559 ••• |
1/√Φ |
Cubic root of Φ |
1.173 984 996 705 328 509 966 683 ••• |
Φ1/3, ratio of edges of cubes with golden-ratio volumes. |
Cubic root of the inverse φ |
0.851 799 642 079 242 917 055 213 ... |
1/Φ1/3 |
π/Φ = π.φ |
1.941 611 038 725 466 577 346 865 ••• |
Area of golden ellipse with semi_axes {1,φ} |
log(Φ) = - log(φ) = acosh((√5)/2) = -i acos((√5)/2) |
0.481 211 825 059 603 447 497 758 ••• |
Natural logarithm of Φ |
Φ 2/π, such as in the golden spiral |
1.358 456 274 182 988 435 206 180 ••• |
(2/π) log(Φ) = 0.306 348 962 530 033 122 115 675 ••• |
Infinite power tower of the inverse φ |
0.710 439 287 156 503 188 669 345 ••• |
φ^φ^φ^...; also solution of x = φx = Φ-x |
Infinite nested radical √(Φ+√(Φ+√(Φ+ ...))) |
1.866 760 399 173 862 092 990 872 ... |
= (1+sqrt(1+4Φ))/2 |
Arithmetic-Geometric mean AGM(1,Φ) |
1.290 452 026 322 977 466 179 732 ... |
|
Named real math constants. Hint: See a list of many corresponding continued fractions on Wikipedia. |
Alladi-Grinstead constant |
0.809 394 020 540 639 130 717 931 ••• |
exp(Sn>0{(zeta(n+1)-1)/n}-1). Re: factorizations of n! |
Apéry's constant ζ(3) |
1.202 056 903 159 594 285 399 738 ••• #t |
Special value of the Riemann zeta function ζ(x) |
Artin's constant |
0.373 955 813 619 202 288 054 728 ••• |
Pprime p{1-1/(p(p-1))} |
Backhouse constant B = Lk→∞|qk+1/qk| = |
1.456 074 948 582 689 671 399 595 ••• |
when Q(x)=Sk≥0{qk xk} = 1/P(x), with P(x) defined below |
Inverse of Backhouse constant 1/B |
0.686 777 834 460 634 954 426 540 ••• |
-1/B is the only real root of P(x)=1+Sk≥1{prime(k) xp} |
Barban's constant |
2.596 536 290 450 542 073 632 740 ••• |
Pprime p{1+(3p2-1)/[p(p+1)(p2-1)]} |
Bernstein's constant β |
0.280 169 499 023 869 133 036 436 ••• |
Re: theory of function approximations by polynomials |
Besicovitch constant (a 10-normal number) |
0.149 162 536 496 481 100 121 144 ••• |
String concatenation of squares in base 10 |
Blazys constant |
2.566 543 832 171 388 844 467 529 ••• |
Its Blazys' expansion generates prime numbers |
Boling's constant |
1.805 917 418 986 691 013 997 505 ••• |
Sn≥1{(n(n+1)/2)/Pk≥0{n!/k!}} |
Brun's constant B2 for twin primes |
1.902 160 583 104 ••• (?) |
Sum of reciprocals of prime pairs (p,p+2) |
Brun's constant B4 for cousin primes |
1.197 044 9 ••• (?) |
Sum of reciprocals of prime pairs (p,p+4) |
Brun's constant B'4 for prime quadruples |
0.870 588 380 ••• (?) |
Sum of reciprocals of prime quadruplets (p,p+2,p+6,p+8) |
Buffon's constant |
0.636 619 772 367 581 343 075 535 ••• #t |
2/π. Solution of a 1733 needle-throwing problem |
Cahen's constant C |
0.643 410 546 288 338 026 182 254 ••• |
C = Sk≥0{(-1)k/(sk-1)}, where sk is the Sylvester's sequence |
Catalan's constant C |
0.915 965 594 177 219 015 054 603 ••• |
C = Sk≥0{(-1)k2} |
Champernowne constant C10 (10-normal) |
0.123 456 789 101 112 131 415 161 ••• #t |
String concatenation of natural numbers in base 10 |
Copeland-Erdös constant (10-normal number) |
0.235 711 131 719 232 931 374 143 ••• |
String concatenation of prime numbers in base 10 |
Conway's constant λ(3) |
1.303 577 269 034 296 391 257 099 ••• |
Growth rate of derived look-and-say strings |
Delian constant |
1.259 921 049 894 873 164 767 210 ••• |
21/3. The name refers to the Oracle on island Delos. |
Dottie number |
0.739 085 133 215 160 641 655 312 ••• #t |
The only real solution of x = cos(x) |
Efimov's scaling constant in quantum physics |
22.694 382 595 366 695 192 860 217 ••• |
= exp(π/r), r being the root of x.cosh(xπ/2)=8.sinh(xπ/6)/√3.
|
Embree - Trefethen constant β |
0.70258 ••• (?) |
Theory of 2nd order recurrences with random add/subtract |
Erdös - Borwein constant |
1.606 695 152 415 291 763 783 301 ••• |
Sn>0{1/(2n -1)} |
Favard constants Kr = πrR |
R = 1/1, 1/2, 1/8, 1/24, 5/384, 1/240, 61/46080, ••• |
Kr = (4/π)Sk≥0{[(-1)k/(2k+1)]r+1}. Also Akhiezer - Krein - Favard cons. |
Feigenbaum reduction parameter α |
-2.502 907 875 095 892 822 283 902 ••• |
Appears in the theory of chaos |
Feller - Tornier constant F |
0.661 317 049 469 622 335 289 765 ••• |
F = (1+Pprime p{1-2/p2})/2. See also |
Often (mis)labeled as Feller - Tornier's: |
0.322 634 098 939 244 670 579 531 ••• |
Pprime p{1-2/p2}. |
Feigenbaum
bifurcation velocity δ |
4.669 201 609 102 990 671 853 203 ••• #t |
Appears in the theory of chaos |
Flajolet-Odlyzko constant |
0.757 823 011 268 492 837 742 175 ••• |
2 I t=0,∞{1-exp(Ei(-t)/2)} |
Foias constant α |
1.187 452 351 126 501 054 595 480 ••• |
xn+1=(1+1/xn)n converges for all x1>0 except x1 = α |
Foias-Ewing constant β |
2.293 166 287 411 861 031 508 028 ••• |
Attractor of f(#)=(1+1/#)#; converges for any starting x>0 |
Fransén-Robinson constant |
2.807 770 242 028 519 365 221 501 ••• |
Ix=0,∞{1/Γ(x)}; see Gamma function |
Gauss' constant G |
0.834 626 841 674 073 186 814 297 ••• |
1/AGM(1,√2); AGM is the Arithmetic-Geometric mean |
Gauss-Kuzmin-Wirsing constant λ1 |
0.303 663 002 898 732 658 597 448 ••• |
2nd eigenvalue of GKW functional operator (first is 1) |
Gelfond's constant |
23.140 692 632 779 269 005 729 086 ••• #t |
eπ = (-1)-i |
Gelfond-Schneider constant |
2.665 144 142 690 225 188 650 297 ••• #t |
2^√2 |
The last two constants are sometimes called |
Hilbert's: |
he named them in his 1900 Mathematical Problems address |
Gerver's moving sofa constant |
2.219 531 668 871 97 (? largest so far) |
A sofa that can turn unit-width hallway corner |
Hammersley's lower bound on Gerver's const. |
2.207 416 099 162 477 962 306 856 ••• |
π/2 + 2/π. Also the mean angle of a random rotation. |
Gibbs constant G |
1.851 937 051 982 466 170 361 053 ••• |
Si(π), Ix=0,pi;{sin(x)/x}. |
Wilbraham-Gibbs constant G' |
1.178 979 744 472 167 270 232 028 ••• |
2G/π. Quantifies Gibbs effect in Fourier Transform. |
Gieseking's constant G |
1.014 941 606 409 653 625 021 202 ••• |
Integral of log(2.cos(x/2)) from 0 to 2π/3. |
Glaisher-Kinkelin constant A |
1.282 427 129 100 622 636 875 342 ••• |
exp(1/12 -ζ'(-1)). Appears often in number theory |
Kinkelin constant |
-0.165 421 143 700 450 929 213 919 ••• |
1/12-log(A) = ζ'(-1). Unstable nomenclature. |
Golomb-Dickman constant λ |
0.624 329 988 543 550 870 992 936 ••• |
Average longest cycle length in random permutations |
Gompertz constant G |
0.596 347 362 323 194 074 341 078 ••• |
G = -e.Ei(-1), Ei(x) being the exponential integral |
Graham's constant G(3) |
0.783 591 464 262 726 575 401 950 ••• |
Digits of 3^^k, read backwards, for k->infinity |
Grossmann's constant |
0.737 338 303 369 29 ••• (?) |
The only x for which {a0=1; a1=x; an+2=an/(1+an+1)} converges |
Heat - Brown - Moroz constant |
0.001 317 641 154 853 178 109 817 ••• |
Pprime p {(1-1/p)7(1+(7p+1)/p2)} |
Kempner-Mahler number κ |
0.816 421 509 021 893 143 708 079 ••• #t |
Sk≥0 {1/2^(2^k)} |
Khinchin's constant K0 |
2.685 452 001 065 306 445 309 714 ••• |
Pn≥1{(1+1/(n(n+2)))log2(n)}. Limit geom.mean of cont.fract. terms |
Khinchin-Lévy constant β |
1.186 569 110 415 625 452 821 722 ••• |
β = π2/(12.ln2) = Sk≥1{(-1)k+1/k2}/Sk≥1{(-1)k+1/k} = η(2)/η(1) |
Lévy constant γ |
3.275 822 918 721 811 159 787 681 ••• |
γ = eβ = exp(π2/(12.ln2)). Unstable nomenclature |
Knuth's random-generators constant |
0.211 324 865 405 187 117 745 425 ••• |
(1-1/√3)/2 |
Kolakoski constant γ |
0.794 507 192 779 479 276 240 362 ••• |
Related to Kolakoski sequence |
Komornik-Loreti constant q |
1.787 231 650 182 965 933 013 274 ••• #t |
Least x such that Sk>0{ak/xk}=1 for a unique sequence {ak} |
Landau-Ramanujan constant |
0.764 223 653 589 220 662 990 698 ••• |
Related to the density of sums of two integer squares |
Lagrange numbers L1=√5, L2=√8, L3=(√221)/5= |
2.973 213 749 463 701 104 522 401 ••• |
Ln = sqrt(9-4/M(n)^2), M(n) being n-th Markov number |
Laplace limit constant λ |
0.662 743 419 349 181 580 974 742 ••• |
Let η = √(1+λ2); then λeη = 1+η
Click here for more |
Lieb's square ice constant |
1.539 600 717 839 002 038 691 063 ••• |
(8/9)√3. Counting directed graphs. Related to ice lattice |
Twenty-Vertex entropy constant |
2.598 076 211 353 315 940 291 169 ••• |
(3/2)√3. As above, but for triangular lattices |
Linnik's constant L |
1 ≤ L ≤ 11/2, that is all we know |
Regards primes in integer arithmetic progressions |
Liouville's constant |
0.110 001 000 000 000 000 000 001 ••• #t |
Sn>0{10^(-n!)} |
Loch's constant |
0.970 270 114 392 033 925 740 256 ••• |
6.log(2).log(10)/π2; convergence rate of continued fractions |
Madelung's constant M3 |
-1.747 564 594 633 182 190 636 212 ••• |
M3 = Si,j,k{(-1)i+j+k/sqrt(i^2+j^2+k^2)} |
Meissel - Mertens constant B1 |
0.261 497 212 847 642 783 755 426 ••• |
Ln→∞{Sprime p≤n{1/p}-log(log(n))} |
Meissel - Mertens constant is also known as |
Kronecker constant, and as |
Hadamard - de la Vallee-Poussin constant |
Mills' constant θ |
1.306 377 883 863 080 690 468 614 ••• |
Smallest θ such that floor(θ^3n) is prime for any n |
Minkowski-Bower constant b |
0.420 372 339 423 223 075 640 993 ••• |
For Minkowski question-mark function, a solution of ?x = x |
MRB constant (after Marvin R. Burns) |
0.187 859 642 462 067 120 248 517 ••• |
Sk>0{(-1)k (k1/k - 1)} |
Oscillatory-integral MRB constant, modulus |
0.687 652 368 927 694 369 809 312 ••• |
abs(Ln→∞{Ix=1,2n{eiπx x1/x}}). Note: eiπx ≡ (-1)x |
Oscillatory-integral MRB constant, real part |
0.070 776 039 311 528 803 539 528 ••• |
real(Ln→∞{Ix=1,2n{eiπx x1/x}}), also called MKB constant |
Oscillatory-integral MRB constant, imag part |
-0.684 000 389 437 932 129 182 744 ••• |
imag(Ln→∞{Ix=1,2n{eiπx x1/x}}) |
Murata's constant |
2.826 419 997 067 591 575 546 391 ••• |
Pprime p{1+1/(p-1)2} |
Niven's constant C |
1.705 211 140 105 367 764 288 551 ••• |
Mean maximal exponent in prime factorization |
Norton's constant B for Euclid's GCD algorithm |
0.065 351 425 923 037 321 378 782 ••• |
for 1≤n,m≤n, GCD(n,m) takes av. (12.log(2)/π2)log(n)+B steps. |
Odlyzko-Wilf constant K |
1.622 270 502 884 767 315 956 950 ••• |
When x0=1, xn+1=ceil(3xn/2), then xn=floor(K.(3/2)n) |
Omega constant = Lambert W0(1) |
0.567 143 290 409 783 872 999 968 ••• |
Root of (x-e-x) or (x+log(x)). See also. |
Otter's constant α |
2.955 765 285 651 994 974 714 817 ••• |
Appears in enumeration of rooted and unrooted trees: |
Otter's asymptotic constant βu |
0.534 949 606 1(?) ••• |
for unrooted trees: UT(n) ~ βu αn n-5/2 |
Otter's asymptotic constant βr |
0.439 924 012 571 (?) ••• |
for rooted trees: RT(n) ~ βr αn n-3/2 (V. Kotesovec) |
Plouffe's constant |
0.147 583 617 650 433 274 175 401 ••• #t |
= atan(1/2)/π |
Pogson's ratio |
2.511 886 431 509 580 111 085 032 ••• |
1001/5; in astronomy 1 stellar magnitude brightness ratio |
Polya's random-walk constant p3 |
0.340 537 329 550 999 142 826 273 ••• |
Probability a 3D-lattice random walk returns back. See also |
Porter's constant C |
1.467 078 079 433 975 472 897 798 ••• |
Arises analyzing efficiency of Euclid's GCD algorithm |
Prévost's constant (reciprocal Fibonacci) |
3.359 885 666 243 177 553 172 011 ••• |
Sum of reciprocals of Fibonacci numbers |
Reciprocal even Fibonacci constant |
1.535 370 508 836 252 985 029 852 ••• |
Sum of reciprocals of even-indexed Fibonacci numbers |
Reciprocal odd Fibonacci constant |
1.824 515 157 406 924 568 142 158 ••• |
Sum of reciprocals of odd-indexed Fibonacci numbers |
Prince Rupert's cube constant |
1.060 660 171 779 821 286 601 266 ••• |
(3√2)/4. Side of largest cube passing through a unit cube |
Rényi's parking constant m |
0.747 597 920 253 411 435 178 730 ••• |
Linear space occupied by randomly parked cars |
Robbins, or cube line picking constant Δ(3) |
0.661 707 182 267 176 235 155 831 ••• |
Average length of a random line inside a unit 3D cube |
Salem number σ1 |
1.176 280 818 259 917 506 544 070 ••• |
Related to the structure of the set of algebraic integers |
Sarnak's constant |
0.723 648 402 298 200 009 408 849 ••• |
Pprime p≥3{1-(p+2)/p3} |
Schwarzschild constant, or conic constant |
7.389 056 098 930 650 227 230 427 ••• #t |
e2 |
Shall-Wilson or twin primes constant Π2 |
0.660 161 815 846 869 573 927 812 ••• |
Pprimes p≥3{1-1/(p-1)2} |
Sierpinski constant S |
0.822 825 249 678 847 032 995 328 ••• |
S = log(4*π3e2γ/Γ4(1/4)) |
and Sierpinski constant K = πS |
2.584 981 759 579 253 217 065 893 ••• |
Related to decompositions of n into k squares |
Soldner's constant (or Ramanujan-Soldner's) μ |
1.451 369 234 883 381 050 283 968 ••• |
Positive real root of logarithmic integral li(x). |
Somos' quadratic recurrence constant σ |
1.661 687 949 633 594 121 295 818 ••• |
σ=√(1√(2√(3 ...))). Somos's sequence tends to σ^(2n)/(n+2) |
Stieltjes constants γn: |
For values, click here |
Coefficients of the expansion of Riemann's ζ(s) about s=1 |
Taniguchi's constant |
0.678 234 491 917 391 978 035 538 ••• |
Pprime p{1-3/p3+2/p4+1/p5-1/p6} |
Theodorus' constant |
1.732 050 807 568 877 293 527 446 ••• |
√3. |
Thue-Morse constant |
0.412 454 033 640 107 597 783 361 ••• #t |
Thue-Morse sequence as a binary number .0110 ... |
Viswanath's constant |
1.131 988 248 794 3 ••• (?) |
Growth of Fibonacci-like sequence with random +/- |
Wallis' constant |
2.094 551 481 542 326 591 482 386 ••• |
Root of x3-2x-5. A kind of historic curiosity. |
Weierstrass constant σ(1|1,i) |
0.474 949 379 987 920 650 332 504 ••• |
25/4π1/2eπ/8/Γ2(1/4). σ is the Weierstrass σ function. |
Wyler's constant |
0.007 297 348 130 031 832 128 956 ••• |
(9/(16*π3))(π/5!)1/4. Approximation to fine structure constant |
Zagier's constant |
0.180 717 104 711 806 478 057 792 ••• |
Limit of [Count of Markoff numbers < x]/log(3x)^2 |
Zolotarev-Schur constant σ |
0.311 078 866 704 819 209 027 546 ••• |
σ = (1-E(c)/K(c))/c^2, ... see the link for more details |
Other notable real-valued math constants. Note: OGF stands for Ordinary Generating Function. |
Continued fractions constant |
1.030 640 834 100 712 935 881 776 ••• |
(1/6)π2/(log(2)log(10)). Mean c.f.terms per decimal digit |
Evil numbers (see also). Some examples: |
π, Φ, 21/3, 31/2, π666, √6, ... and many more: |
Running sum of their fractional-part digits hits 666 |
Probability that a random real number is evil: |
0.2 - 2.166222683713523944720••• e-64 |
starts with "0.1", followed by 62 "9"s, and then "783..." |
FoxTrot series sum |
0.239 560 747 340 741 949 878 153 ••• |
= Sk≥1{(-1)n+1 n2 /(1+n3)} |
Hard square entropy constant Ln→∞{Fn^(1/n2)}} |
1.503 048 082 475 332 264 322 066 ••• |
Fn = number of nXn binary matrices with no adjacent 1's |
√(1+√(2+√(3+√(4+√(5+ ... ))))) |
1.757 932 756 618 004 532 708 819 ••• |
Infinite nested radical of natural numbers |
√(2+√(3+√(5+√(7+√(11+ ... ))))) |
2.103 597 496 339 897 262 619 939 ••• |
Infinite nested radical of primes |
(1+(1+(1+(1+ ... )1/4)1/3)1/2)1/1 |
2.517 600 167 877 718 891 370 658 ... |
An infinite nested power on one's |
(1!+(2!+(3!+(4!+ ... )1/4)1/3)1/2)1/1 |
3.005 583 659 206 261 169 270 945 ... |
An infinite nested power on factorials |
(1/2)^((1/2)^((1^2)^ ... )) |
0.641 185 744 504 985 984 486 200 ••• |
Infinite power tower of 1/2; solution of x = 2-x |
Lemniscate constant L |
2.622 057 554 292 119 810 464 839 ••• |
L = πG, where G is the Gauss' constant |
First lemniscate constant LA |
1.311 028 777 146 059 905 232 419 ••• |
LA = L/2 = πG/2 |
Second lemniscate constant LB |
0.599 070 117 367 796 103 337 484 ••• |
LB = 1/(2G) = AGM(1,i)/(1+i) |
Mandelbrot set area |
1.506 591 ••• (?) |
Hard to estimate |
(1-1/2)(1-1/4)(1-1/8)(1-1/16) ... |
0.288 788 095 086 602 421 278 899 ••• |
Infinite product Pk=1,∞{1-xk}, for x=1/2 |
Quadratic Class Number constant |
0.881 513 839 725 170 776 928 391 ••• |
Pprime p{1-1/(p2(p+1))} |
Rabbit constant |
0.709 803 442 861 291 314 641 787 ••• |
See the binary rabbit sequence and number |
Real root of P(x) ≡ <OGF for primes> |
-0.686 777 834 460 634 954 426 540 ••• |
P(x)=1+Sk>0{prime(k).xk}. The real root is unique. |
Square root of Gelfond - Schneider constant |
1.632 526 919 438 152 844 773 495 ••• #t |
√2^√2 = 2^(1/√2). Notable because proved transcendental |
Sum 1+1/22+1/33+1/44+ ... |
1.291 285 997 062 663 540 407 282 ••• |
Sk>0{1/kk} |
Sum of reciprocals of exponential factorials |
1.611 114 925 808 376 736 111 111, ••• #t |
Search this doc for "exponential factorials" |
Sum of reciprocals of distinct powers |
0.874 464 368 404 944 866 694 351 ••• |
See also the perfect powers without repetitions |
Tribonacci constant |
1.839 286 755 214 161 132 551 852 ••• |
Asymptotic growth rate of tribonacci numbers. |
Tetranacci constant |
1.927 561 975 482 925 304 261 905 ••• |
Asymptotic growth rate of tetranacci numbers. |
Z-numbers ξ: for any k>1, 0≤ frac(ξ(3/2)k) <1/2 |
No Z-number is known |
There exists at most one in each (n,n+1) interval, n>0 |
Constants related to harmonic numbers Hn = Sk=1,2,...,n{1/k} |
Sn≥1{(-1)nHn/n!} |
-0.484 829 106 995 687 646 310 401 ... |
|
Sn≥1{Hn/n!} |
2.165 382 215 326 936 359 420 986 ... |
|
Sn≥1{(-1)nHn/n!2} |
-0.672 462 966 936 363 624 928 336 ... |
= γ.J0(2) - (π/2).Y0(2). See Bessel functions for J0 and Y0 |
Sn≥1{Hn/n!2} |
1.429 706 218 737 208 313 186 746 ... |
= (log(i)+γ).J0(2i) - (π/2).Y0(2i) |
Hausdorff dimensions for selected fractal sets |
Feigenbaum attractor-repeller |
0.538 045 143 580 549 911 671 415 ••• |
No explicit formula |
Cantor set, removing 2nd third |
0.630 929 753 571 457 437 099 527 ••• #t |
log3(2) = log(2)/log(3). See also Devil's staircase function |
Asymmetric Cantor set, removing 2nd quarter |
0.694 241 913 630 617 301 738 790 ••• |
log2(Φ) = log(Φ)/log(2), related to the golden ratio Φ |
Real numbers with no even decimal digit |
0.698 970 004 336 018 804 786 261 ••• |
Log(5) = log(5)/log(10) |
Rauzy fractal boundary r |
1.093 364 164 282 306 639 922 447 ••• |
Let z3-z2-z-1 = (z-c)(z-a)(z-a*). Then 2|a|3r+|a|4r=1 |
2D Cantor dust, Koch snowflake, plus more |
1.261 859 507 142 914 874 199 054 ••• #t |
log3(4) = 2.log(2)/log(3). A case of Liedenmayer's systems |
Apollonian gasket (triples of circles in 2D plane) |
1.305 686 729 (?) ••• |
No explicit formula |
Heighway-Harter dragon curve boundary |
1.523 627 086 202 492 106 277 683 ••• |
log2((1+(73-6√87)1/3+(73+6√87)1/3)/3) |
Sierpinsky triangle |
1.584 962 500 721 156 181 453 738 ••• #t |
log2(3) = log(3)/log(2) |
3D Cantor dust, Sierpinski carpet |
1.892 789 260 714 372 311 298 581 ••• #t |
log3(8) = 3.log(2)/log(3) |
Lévy C curve | Lévy fractal / dragon |
1.934 007 182 988 290 978 (?) ••• |
No explicit formula |
Menger sponge |
2.726 833 027 860 842 041 396 094 ••• |
log3(20) = log(20)/log(3) |
Simple continued fractions CF{a} of the form a0+1/(a1+1/(a2+1/(a3+(...)))) for integer sequences a = {a0,a1,a2,a3,...}. See also a list of CF's for various constants. |
ak = 1, k=0,1,2,3,... |
1.618 033 988 749 894 848 204 586 ••• |
golden ratio Φ |
ak = k, nonnegative integers |
0.697 774 657 964 007 982 006 790 ••• |
|
ak = prime(k+1), primes |
2.313 036 736 433 582 906 383 951 ••• |
|
ak = k2, perfect squares |
0.804 318 561 117 157 950 767 680 ••• |
|
ak = 2k, powers of 2 |
1.445 934 640 512 202 668 119 554 ••• |
See also OEIS A096641 |
ak = k!, factorials |
1.684 095 900 106 622 500 339 633 ••• |
|
Special continued fractions of the form a1+a1/(a2+a3/(a3+(...))) for integer sequences a = {a1,a2,a3,...}. |
an = n, natural numbers |
1.392 211 191 177 332 814 376 552 ••• |
= 1/(e-2) |
an = prime(n), primes |
2.566 543 832 171 388 844 467 529 ••• |
Blazys constant |
an = n2, squares > 0 |
1.226 284 024 182 690 274 814 937 ••• |
|
an = 2n-1, powers of 2 |
1.408 615 979 735 005 205 132 362 ••• |
|
an = (n-1)!, factorials |
1.698 804 767 670 007 211 952 690 ••• |
|
Alternating sums of inverse powers of prime numbers,
sip(x) = -Sk>0{(-1)k/px(k)}, where p(n) is the n-th prime number |
sip(1/2) |
0.347 835 4 ... |
1/√2 -1/√3 +1/√5 -1/√7 +1/√11 -1/√13 +1/√17 -... |
sip(1) |
0.269 606 351 916 7 ••• |
1/2 -1/3 +1/5 -1/7 +1/11 -1/13 +1/17 -... |
sip(2) |
0.162 816 246 663 601 41 ••• |
1/2^2 -1/3^2 +1/5^2 -1/7^2 +1/11^2 -1/13^2 +... |
sip(3) |
0.093 463 631 399 649 889 112 4 ••• |
1/2^3 -1/3^3 +1/5^3 -1/7^3 +1/11^3 -1/13^3 +... |
sip(4) |
0.051 378 305 166 748 282 575 200 ••• |
1/2^4 -1/3^4 +1/5^4 -1/7^4 +1/11^4 -1/13^4 +... |
sip(5) |
0.027 399 222 614 542 740 586 273 ••• |
1/2^5 -1/3^5 +1/5^5 -1/7^5 +1/11^5 -1/13^5 +... |
Some notable natural and integer numbers |
Large integers |
Bernay's number |
67^257^729 |
Originally an example of a hardly ever used number |
Googol |
10100 = 10^100 |
A large integer ... |
Googolplex |
10 googol = 10^10^100 |
... a larger integer ... |
Googolplexplex |
10 googolplex = 10^10^10^100 |
... and a still larger one. |
Graham's number (last 30 digits) |
••• 5186439059104575627262464195387 |
3^^...^^3, 64 times (3^^64); see Graham's constant |
Shannon number, lower bound estimate: |
10^120 |
The game-tree complexity of chess |
Skewes' numbers |
10^14 < n < e^e^e^79 |
Bounds on the first integer n for which π(n) < li(n) |
Notable | interesting integers |
Ishango bone prime
quadruplet |
11, 13, 17, 19 |
Crafted in the paleolithic Ishango bone |
Hardy-Ramanujan number |
1729 = 13+123 = 93+103 (see A080642) |
Smallest cubefree taxicab number T(2); see below |
Heegner numbers h (full set) |
1,2,3,7,11,19,43,67,163 (see A003173) |
The quadratic ring Q(√(-h)) has class number 1 |
Vojta's number |
15170835645 (see A023050) |
Smallest cubefree T(3) taxicab number (see the link) |
Gascoigne-Moore number |
1801049058342701083 (see A080642) |
Smallest cubefree T(4) taxicab number (see the link) |
Tanaka's number |
906150257 (see A189229) |
Smallest number violating Polya conjecture that L(n>1)≤0 |
Related to Lie groups ... |
Orders of Weyl groups of type En, n=6,7,8 |
51840, 2903040, 696729600 (A003134) |
273451, 210345171, 214355271, respectively.
|
Largest of ... |
Narcissistic numbers |
There are only 88 of them (A005188 |
max = 115132219018763992565095597973971522401 |
Not composed of two abundants |
20161 (see A048242) |
Exactly 1456 integers are the sum of two abundants |
Consecutive 19-smooth numbers |
11859210, 11859211 (see A002072) |
In case you wonder: this pair was singled-out on MathWorld |
Factorions in base 10 |
40585 (see A193163) |
Equals the sum of factorials of its dec digits |
Factorions in base 16 |
2615428934649 (see A193163) |
Equals the sum of factorials of its hex digits |
Right-truncatable prime in base 10 |
73939133 (see A023107) |
Truncate any digits on the right and it's still a prime. |
Right-truncatable primes in base 16 |
hex 3B9BF319BD51FF (see A237600) |
Truncate any hex digits on the right and it's still a prime. |
Left-truncatable prime with no 0 digit |
357686312646216567629137 (A103443) |
Each suffix is prime. Admitting "0", such primes never end. |
Primes slicing only into primes |
739397 (see A254751) |
Prime whose decimal prefixes and postfixes are all prime. |
Composites slicing only into primes |
73313 (see A254753) |
All its decimal prefixes and postfixes are prime. |
Smallest of ... |
Sierpinsky numbers |
78557 (see A076336) |
m is a Sierpinsky number if m*2k+1 is not prime for any k>0. |
Riesel numbers (conjectured!) |
509203 (see A076337) |
m is a Riesel number if m*2k-1 is not prime for any k>0. |
Known Brier numbers |
3316923598096294713661 (A076335) |
Numbers that are both Riesel and Sierpinski |
Non-unique sums of two 4th powers |
635318657 (see A003824) |
= 1334 + 1344 = 594 + 1584 |
Odd abundant numbers |
945 (see A005231) |
Odd number whose sum of proper divisors exceeds it |
Sociable numbers |
12496 (see A003416) |
Its aliquot sequence terminates with a 5-member cycle |
Number of The Beast (Revelation 13:18), etc... |
666; also the 6x6-th triangular number |
and the largest left- and right-truncatable triangular number |
Evil numbers (real) and evil integers |
are two distinct categories |
which must not be confused! |
Belphegor numbers B(n) |
16661, 1066601, 100666001, ••• |
prime for n=0, 13, 42, 506, 608, 2472, 2623, 28291, ••• |
Belphegor prime B(13). |
1000000000000066600000000000001 |
See A232448. Belphegor: one of the seven princes of Hell. |
Smallest apocalyptic number |
2157, a power of 2 containing digits 666 |
182687704666362864775460604089535377456991567872 |
Other Apocalyptic number exponents |
157, 192, 218, 220, 222, 224, 226, 243, ••• |
m such that 2m contains the sequence of digits "666" |
Legion's number of the first kind L1 |
666 666 |
It has 1881 decimal digits |
Legion's number of the second kind L2 |
666! 666! |
It has approximately 1.609941...e1596 digits |
Named / notable functions of natural numbers.
Each is also an integer sequence. Their domain {n=1,2,3,...} can be often extended. |
Aliquot sum function s(n) |
0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, ••• |
s(n) = σ(n)-n. Sum of proper divisors of n. |
Divisor function d(n) ≡ σ0(n) |
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, ••• |
Number of all divisors of n. Also Sd|n{d0} |
Euler's totient function φ(n) |
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, ••• |
Number of k's smaller than n and relatively prime to it |
Iterated Euler's totient function φ(φ(n)) |
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, ••• |
Pops up in counting the primitive roots of n |
Factorial function n! = 1*2*3...*n, but 0!=1 |
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ••• |
Also: permutations of ordered sets of n labeled elements |
Hamming weight function Hw(n) |
1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, ••• |
Number of 1's in the binary expansion of n |
Liouville function λ(n) |
1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, ••• |
μ(n)=(-1)^Ω(n). For the bigomega function, see below. |
Partial sums of Liouville function L(n) |
0, 1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, ••• |
The Polya conjecture, L(n>1)≤0, breaks at Tanaka's number. |
Möbius function μ(n) |
1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, ••• |
μ(n)=(-1)^ω(n) if n is squarefree; else μ(n)=0 |
omega function ω(n) |
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, ••• |
Number of distinct prime factors of n. |
Omega (or bigomega) function Ω(n) |
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, ••• |
Number of all prime factors of n, with multiplicity. |
Primes sequence function prime(n) |
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ••• |
A prime number is divisible only by 1 and itself; excluding 1 |
Primes counting function π(n) |
0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7,••• |
π(x) is the number of primes not exceeding x. See A006880. |
Primorial function n# |
1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, ••• |
Product of all primes not exceeding n |
Sigma function σ(n) ≡ σ1(n) |
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, ••• |
Sum of all divisors of n. Also Sd|n{d1}. |
Sigma-2 function σ2(n) |
1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, ••• |
Sd|n{d2}. Sum of squares of all divisors. |
Sigma-3 function σ3(n) |
1, 9, 28, 73, 126, 252, 344, 585, 757, ••• |
In general, for k ≥ 0, σk(n) = Sd|n{dk} |
Sum of distinct prime factors sopf(n) |
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, ••• |
Example: sopf(12) = sopf(2^2.3) = 2+3 = 5. |
Sum of prime factors with repetition sopfr(n) |
0, 2, 3, 4, 5, 5, 7, 6, 6, 7, 11, 7, 13, 9, 8, ••• |
Also said with multiplicity. Example: sopfr(12) = 2+2+3 = 7. |
Notable integer sequences (each of them is also an integer-valued function). Here n = 0, 1, 2, ..., unless specified otherwise. |
Named sequences |
Catalan numbers C(n) |
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ••• |
C(n) = C(2n,n)/(n+1); ubiquitous in number theory |
Cullen numbers Cn |
1, 3, 9, 25, 65, 161, 385, 897, 2049, ••• |
Cn = n.2n+1. Very few are prime. |
Cullen primes subset of Cn, for n = |
1, 141, 4713, 5795, 6611, 18496, 32292, ••• |
Largest known (Feb 2016): n = 6679881 |
Euclid numbers 1+prime(n)# |
2, 3, 7, 31, 211, 2311, 30031, 510511, ••• |
1 + (product of first n primes) = 1 + Pk=1,n{prime(k)} |
Euler numbers E(n) for n = 0, 2, 4, ... |
1, -1, 5, -61, 1385, -50521, 2702765, ••• |
E.g.f: 1/cosh(z) (even terms only) |
Fermat numbers F(n) |
3, 5, 17, 257, 655337, 4294967297, ••• |
F(n) = 2^(2n)+1. Very few are primes. |
Fermat primes subset of Fermat numbers F(n) |
3, 5, 17, 257, 655337, ••• (? Feb 2016) |
F(n) for n=0,1,2,3,4. Also prime(n) for n=2,3,7,55,6543,•••. |
Fibonacci numbers F(n) |
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ••• |
Fn = Fn-1+Fn-2; F0=0, F1=1 |
Tribonacci numbers T(n) |
0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ••• |
Tn = Tn-1+Tn-2+Tn-3; T0=T1=0, T2=1 |
Tetranacci numbers T(n) |
0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ••• |
Tn = Tn-1+Tn-2+Tn-3+Tn-4; T0=T1=T2=0, T3=1 |
Golomb's | Silverman's sequence, n = 1, 2, ... |
1, 2,2, 3,3, 4,4,4, 5,5,5, 6,6,6,6, 7,7,7,7, 8, ••• |
a(1)=1, a(n)= least number of times n occurs if a(n)≤a(n+1) |
Jordan-Polya numbers |
1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72,••• |
Can be written as products of factorials |
Kolakoski sequence |
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, ••• |
1's and 2's only. Run-lengths match the sequence |
Lucas numbers L(n) |
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199,••• |
Ln = Ln-1 + Ln-2; L0 = 2, L1 = 1 |
Markov numbers, n = 1, 2, ... |
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, ••• |
Members of a Markoff triple (x,y,z): x2 + y2 + z2 = 3xyz |
Mersenne numbers, n = 1, 2, ... |
3, 7, 31, 127, 2047, 8191, 131071, ••• |
2prime(n)-1; |
Ore's harmonic divisor numbers, n = 1, 2, ... |
1, 6, 28, 140, 270, 496, 672, 1638, ••• |
The harmonic mean of their divisors is integer |
Pell numbers P(n) |
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ••• |
Pn = 2*Pn-1 + Pn-2; P0 = 0, P1 = 1 |
Pell-Lucas (or companion Pell) numbers Q(n) |
2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, ••• |
Qn = 2*Qn-1 + Qn-2; Q0 = 2, Q1 = 2 |
Proth numbers |
3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, ••• |
They have the form k.2m+1 for some m and some k < 2m. |
Proth primes subset of Proth numbers |
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, ••• |
Largest known (Feb 2016): 19249.213018586+1 |
Riesel numbers |
509203 (?), ••• |
Numbers m such that m.2k-1 is not prime for any k>0. |
Sierpinsky numbers |
78557, 271129, 271577, 322523, ••• |
Numbers m such that m.2k+1 is not prime for any k>0. |
Somos's quadratic recurrence s(n) |
1, 1, 2, 12, 576, 1658880, ••• |
s(0)=1,s(n)=n.s2(n-1). See Somos's constant |
Sylvester's sequence |
2, 3, 7, 43, 1807, 3263443, ••• |
sn+1 = sn2 -sn+1, with s0 = 2. Sk≥0{1/sk} = 1. |
Thabit numbers Tn |
2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, ••• |
3.2n-1. |
Thabit primes subset of Thabit numbers for n = |
0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, ••• |
As of Feb 2016, only 62 are known, up to n = 11895718. |
Wolstenholme numbers |
1, 5, 49, 205, 5269, 5369, 266681, ••• |
Numerators of the reduced rationals Sk=1,n{1/k^2} |
Woodall numbers (Cullen of 2nd kind), Wn |
1, 7, 23, 63, 159, 383, 895, 2047, 4607, ••• |
Wn = n.2n-1, n = 1, 2, 3, ... Very few are prime |
Other notable integer sequences (unclassified) |
Hungry numbers (they want to eat the π) |
5, 17, 74, 144, 144, 2003, 2003, 37929, ••• |
Smallest m such that 2m contains first m digits of π |
Sequences related to Factorials (maybe just in some vague conceptual way) |
Double factorials n!! |
1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ••• |
0!!=1; for n > 0, n!! = n*(n-2)*(n-4)*...*m, where m ≤ 2 |
Triple factorials n!!! or n!3, n = 1,2,3,... |
1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, ••• |
0!!!=1; for n > 0, n!!! = n*(n-3)*(n-6)*...*m, where m ≤ 3 |
Exponential factorials a(n) |
1, 1, 2, 9, 262144, ••• |
a(0)=1; for n > 0, a(n) = na(n-1). Next term has 183231 digits |
Factorions in base 10 |
1, 2, 145, 40585 (that's all) |
Equal to the sum of factorials of their dec digits |
Factorions in base 16 |
1, 2, 2615428934649 (that's all) |
Equal to the sum of factorials of their hex digits |
Hyperfactorials H(n) = Pk=1,n{kk} |
1, 1, 4, 108, 27648, 86400000, ••• |
H(0) is conventional |
Quadruple factorials (2n)!/n! |
1, 2, 12, 120, 1680, 30240, 665280, ••• |
Equals (n+1)!C(n), C(n) being the Catalan number |
Pickover's tetration superfactorials (n!^^n!)/n! |
1, 1, 4, (incredible number of digits), ... |
Here the term 'superfactorial' is deprecated |
Subfactorials !n = n!*Sk=0,n{(-1)k/k!} |
1, 0, 1, 2, 9, 44, 265, 1854, 14833, ••• |
Also called derangements or rencontres numbers |
Superfactorials n$ = Pk=0,n{k!} |
1, 1, 2, 12, 288, 34560, 24883200, ••• |
Prevailing definition (see below another one by Pickover) |
Sequences related to the Hamming weight function |
Evil integers (but see also) |
0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, ••• |
Have even Hamming weight Hw(n) |
Odious numbers |
1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, ••• |
Have odd Hamming weight Hw(n) |
Primitive odious numbers |
1, 7, 11, 13, 19, 21, 25, 31, 35, 37, 41, 47, ••• |
They are both odd and odious |
Pernicious numbers |
3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, ••• |
Their Hamming weights Hw(n) are prime. |
Sequences related to powers |
Narcissistic | Armstrong | Plus perfect numbers |
1,2,3,4,5,6,7,8,9, 153, 370, 371, 470, ••• |
n-digit numbers equal to the sum of n-th powers of their digits |
Powers of 2 |
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ••• |
Also 2-smooth numbers |
Perfect powers without duplications |
4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, ••• |
Includes any number of the form a^b with a,b > 1 |
Perfect powers with duplications |
4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, ••• |
Repeated entries can be obtained in different ways |
Perfect squares |
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ••• |
Same as figurate polygonal square numbers |
Perfect cubes |
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ••• |
Same as figurate polyhedral cubic numbers |
Taxicab numbers
Ta(n); only six are known |
2, 1729, 87539319, 6963472309248, ••• |
Smallest number equal to a3+b3 for n distinct pairs (a,b). |
Sequences related to divisors. For functions like σ(n) and s(n) = σ(n)-n, see above. |
Abundant numbers |
12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, ••• |
Sum of proper divisors of n exceeds n: s(n) > n |
Primitive abundant numbers |
20, 70, 88, 104, 272, 304, 368, 464, 550, ••• |
All their proper divisors are deficient |
odd abundant numbers |
945, 1575, 2205, 2835, 3465, 4095, ••• |
Funny that the smallest one is so large |
odd abundant numbers not divisible by 3 |
5391411025, 26957055125, ••• |
see also A047802 |
Composite numbers |
4, 8, 9, 10, 14, 15, 16, 18, 20, 21, 22, 24, ••• |
Have a proper divisor d > 1 |
highly composite numbers |
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, ••• |
n has more divisors than any smaller number |
Cubefree numbers |
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ••• |
Not divisible by any perfect cube. |
Deficient numbers |
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, ••• |
Sum of proper divisors of n is smaller than n: s(n) < n |
Even numbers |
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ••• |
Divisible by 2 |
Odd numbers |
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ••• |
Not divisible by 2 |
Perfect numbers |
6,28,496,8128,33550336,8589869056, ••• |
Solutions of s(n) = n |
semiperfect / pseudoperfect numbers |
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, ••• |
n equals the sum of a subset of its divisors |
primitive / irreducible semiperfect numbers |
6, 20, 28, 88, 104, 272, 304, 350, 368, ••• |
Semiperfect with no proper semiperfect divisor |
quasiperfect numbers |
Not a single one was found so far! |
Such that s(n) = n+1 or, equivalently, σ(n) = 2n+1 |
superperfect numbers |
2, 4, 16, 64, 4096, 65536, 262144, ••• |
Solutions of n = σ(σ(n)) - n |
Practical numbers |
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, ••• |
Any smaller number is a sum of distinct divisors of n |
Squarefree numbers |
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, ••• |
Not divisible by any perfect square. Equivalent to μ(n) ≠ 0 |
Untouchable numbers |
2, 5, 52, 88, 96, 120, 124, 146, 162, 188, ••• |
They are not the sum of proper divisors of ANY number |
Weird numbers |
70, 836, 4030, 5830, 7192, 7912, 9272, ••• |
Abundant, but not semiperfect |
Sequences related to the aliquot sequence As(n), As0 = n, Ask+1 = s(Ask), other than perfect numbers whose aliquot sequence repeats the number itself: |
Amicable number pairs (n,m) |
(220,284); (1184,1210); (2620,2924); ••• |
m = s(n), n = s(m); As(n) is a cycle of two elements |
Aspiring numbers |
25, 95, 119, 143, (276? maybe!), ••• |
n is not perfect, but As(n) eventually reaches a perfect number. |
Lehmer five numbers |
276, 552, 564, 660, 966 |
First five n whose As(n) might be totally a-periodic. |
Sociable numbers |
12496, 14316, 1264460, 2115324, ••• |
As(n) is a cycle of C > 2 elements; see also A052470. |
Sequences related to prime numbers and prime factorizations |
Achilles numbers |
72, 108, 200, 288, 392, 432, 500, 648, ••• |
Powerful, but not perfect. |
Carmichael's pseudoprimes (or Knödel C1) |
561, 1105, 1729, 2465, 2821, 6601, ••• |
Composite n such that an-1=1 (mod n) for any coprime a<n |
D-numbers (Knödel numbers Ck for k=3) |
9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, ••• |
Composite n such that an-k=1 (mod n) for any coprime a<n |
Euler's pseudoprimes in base 2 |
341, 561, 1105, 1729, 1905, 2047, 2465, ••• |
Composite odd n such that 2(n-1)/2 = ±1 (mod n) |
Isolated (single) numbers |
2, 4, 6, 12, 18, 23, 30, 37, 42, 47, 53, 60, ••• |
Either an isolated prime or the mean of twin primes. |
Mersenne primes (p = 2,3,5,7,13,17,19,...) |
3, 7, 31, 127, 8191, 131071, 524287, ••• |
Some M(p) = 2p-1; p prime; Largest known: M(74207281) |
Powerful numbers (also squareful or 2-full) |
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, ••• |
Divisible by the squares of all their prime factors. |
3-full numbers (also cubeful) |
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, ••• |
Divisible by the cubes of all their prime factors. |
Prime twins (starting element) |
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, ••• |
For each prime p in this list, p+2 is also a prime |
Prime cousins (starting element) |
3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, ••• |
For each prime p in this list, p+4 is also a prime |
Prime triples (starting element) |
5, 11, 17, 41, 101, 107, 191, 227, 311, ••• |
For each prime p in this list, p+2 and p+6 are also primes |
Prime quadruples (starting element) |
5, 11, 101, 191, 821, 1481, 1871, 2081, ••• |
For each prime p in this list, p+2, p+6, p+8 are also primes |
Primorial numbers prime(n)# |
1, 2, 6, 30, 210, 2310, 30030, 510510, ••• |
Product of first n primes |
Pseudoprimes to base 2 (Sarrus numbers) |
341, 561, 645, 1105, 1387, 1729, 1905, ••• |
Composite odd n such that 2n-1 = 1 (mod n) |
Pseudoprimes to base 3 |
91, 121, 286, 671, 703, 949, 1105, 1541, ••• |
Composite odd n such that 3n-1 = 1 (mod n) |
Semiprimes (also biprimes) |
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, ••• |
Products of two primes. |
3-smooth numbers |
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, ••• |
b-smooth numbers: not divisible by any prime p > b |
Pierpont primes |
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, ••• |
Primes p such that p-1 is 3-smooth |
Thabit primes (so far, 62 are known) |
2, 5, 11, 23, 47, 95, 191, 383, 6143, ••• |
Thabit number 3.2n-1 which are also prime |
Wieferich primes |
1093, 3511, ••• (next, if any, is > 4.9e17) |
Primes p such that 2^(p-1)-1 is divisible by p2 |
Wilson primes |
5, 13, 563, ••• (next, if any, is > 2e13) |
Primes p such that ((p-1)!+1)/p is divisible by p |
Wolstenholme primes |
16843, 2124679, ••• (next, if any, is > 1e9) |
Primes p such that C(2p,p)-2 is divisible by p4 |
Sequences related to partitions and compositions |
Polite numbers | staircase numbers |
3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, ••• |
Can be written as sum of two or more consecutive numbers. |
Politeness of a number |
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, ••• |
Number of ways to write n as a sum of consecutive numbers. |
Some named | notable binary sequences of "digits" {0,1} or {-1,+1}. An important case is defined by the Liouville function. |
Baum - Sweet sequence |
1,1,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,0,0 ••• |
1 if binary(n) contains no block of 0's of odd length |
Fredholm-Rueppel sequence |
1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0, ••• |
1 at positions 2^k. Binary exp. of Kempner-Mahler number |
Fibonacci words; binary: |
0, 01, 01 0, 010 01, 01001 010, ... |
Like Fibonacci recurrence, using string concatenation |
Infinite Fibonacci word |
010010100100101001010010010 ••• |
Infinite continuation of the above |
Rabbit sequence; binary (click here for dec): |
1, 10, 10 1, 101 10, 10110 101, ••• |
Similar, but with different starting strings |
Rabbit number; binary: |
.1101011011010110101 ••• |
Converted to decimal, gives the rabbit constant |
Jeffrey's sequence |
1011000011111111000000000000 ••• |
Does not have any limit mean density of 1's |
Golay - Rudin - Shapiro sequence |
+1,+1,+1,-1,+1,+1,-1,+1,+1,+1,+1,-1 •••
| b(n)=(-1)^Sk{nknk+1}, with ni denoting the i-th binary digit of n |
Thue - Morse sequence tn |
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0 ••• |
tn = 1 if binary(n) has odd parity (number of ones) |
Combinatorial numbers such as Pascal-Tartaglia triangle binomials, Stirling, Lah and Franel numbers |
Binomial coefficients C(n,m) = n!/(m!(n-m)!) (ways to pick m among n labeled elements); C(n,m)=0 if m<0 or m>n; C(n,0)=1; C(n,1)=n; C(n,m)=C(n,n-m): |
m = 2, n = 4,5,6,... |
6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ••• |
n(n-1)/2; shifted triangular numbers |
m = 3, n = 6,7,8,... |
20, 35, 56, 84, 120, 165, 220, 286, 364, ••• |
n(n-1)(n-2)/3!; shifted tetrahedral numbers |
m = 4, n = 8,9,10,... |
70, 126, 210, 330, 495, 715, 1001, 1365, ••• |
n(n-1)(n-2)(n-3)/4!; for n < 2m, use C(n,n-m) |
m = 5, n = 10,11,12... |
252, 462, 792, 1287, 2002, 3003, 4368, ••• |
n(n-1)(n-2)(n-3)(n-4)/5! |
m = 6, n = 12,13,14,... |
924, 1716, 3003, 5005, 8008, 12376, ••• |
n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n(6)/6! |
m = 7, n = 14,15,16... |
3432, 6435, 11440, 19448, 31824, ••• |
n(7)/7! Use C(n,m)=C(n,n-m) to cover all cases up to n=14 |
Central binomial coefficients C(2n,n) = (2n)!/n!2 |
1, 2, 6, 20, 70, 252, 924, 3432, 12870, ••• |
C(2n,n) = Sk=0,n{C2(n,k)}: Franel number of order 2 |
Entringer numbers E(n,k), k = 0,1,...,n (triangle) |
1; 0,1; 0,1,1; 0,1,2,2; 0,2,4,5,5; ••• |
Counts of particular types of permutations |
Euler zig-zag numbers A(n) |
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, ••• |
≡ alternating permutation numbers. E.g.f: tan(z/2+π/4) |
Franel numbers of order 3 |
1, 2, 10, 56, 346, 2252, 15184, 104960, ••• |
Sk=0,n{C3(n,k)} |
Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)nL(n,m); They expand rising factorials in terms of falling factorials and vice versa. L(n,1) = n! |
m = 2, n = 2,3,4,... |
1, 6, 36, 240, 1800, 15120, 141120, ••• |
|
m = 3, n = 3,4,5,... |
1, 12, 120, 1200, 12600, 141120, ••• |
General formula: L(n,m)=C(n,m)(n-1)!/(m-1)! |
m = 4, n = 4,5,6,... |
1, 20, 300, 4200, 58800, 846720, ••• |
|
Stirling numbers of the first kind c(n,m), unsigned; signed s(n,m) = (-1)n-mc(n,m); number of permutations of n distinct elements with m cycles. s(n,0) = 1. |
m = 1, n = 1,2,3,... |
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ••• |
(n-1)! |
m = 2, n = 2,3,4,... |
1, 3, 11, 50, 274, 1764, 13068, 109584, ••• |
a(n+1)=n*a(n)+(n-1)! |
m = 3, n = 3,4,5,... |
1, 6, 35, 225, 1624, 13132, 118124, ••• |
|
m = 4, n = 4,5,6,... |
1, 10, 85, 735, 6769, 67284, 723680, ••• |
A definition of s(n,m): |
m = 5, n = 5,6,7,... |
1, 15, 175, 1960, 22449, 269325, ••• |
x(n) = x(x-1)(x-2)...(x-(n-1)) = Sm=0,n{s(n,m).xm} |
m = 6, n = 6,7,8,... |
1, 21, 322, 4536, 63273, 902055, ••• |
See also OEIS A008275 |
m = 7, n = 7,8,9,... |
1, 28, 546, 9450, 157773, 2637558, ••• |
|
m = 8, n = 8,9,10,... |
1, 36, 870, 18150, 357423, 6926634, ••• |
|
m = 9, n = 9,10,11,... |
1, 45, 1320, 32670, 749463, 16669653, ••• |
|
Stirling numbers of the second kind S(n,m); number of partitions of n distinct elements into m non-empty subsets. S(n,1) = 1. By convention, S(0,0) = 1. |
m = 2, n = 2,3,4,... |
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ••• |
2(n-1)-1 |
m = 3, n = 3,4,5,... |
1, 6, 25, 90, 301, 966, 3025, 9330, ••• |
|
m = 4, n = 4,5,6,... |
1, 10, 65, 350, 1701, 7770, 34105, ••• |
A definition of S(n,m): |
m = 5, n = 5,6,7,... |
1, 15, 140, 1050, 6951, 42525, 246730, ••• |
xn = Sm=0,n{S(n,m).x(m)} |
m = 6, n = 6,7,8,... |
1, 21, 266, 2646, 22827, 179487, ••• |
See also OEIS A008277 |
m = 7, n = 7,8,9,... |
1, 28, 462, 5880, 63987, 627396, ••• |
|
m = 8, n = 8,9,10,... |
1, 36, 750, 11880, 159027, 1899612, ••• |
|
m = 9, n = 9,10,11,... |
1, 45, 1155, 22275, 359502, 5135130, ••• |
|
Counting (enumeration) sequences relevant to finite sets |
Enumerations of set-related objects, assuming labeled elements. Set cardinality is n=0,1,2,..., unless specified otherwise. |
Subsets (cardinality of the power set) |
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ••• |
2n; also mappings into a binary set |
Derangements (subfactorials) !n |
1, 0, 1, 2, 9, 44, 265, 1854, 14833, ••• |
n!*Sk=0,n{(-1)k/k!} Permutations leaving no element in-place |
Endomorphisms |
1, 1, 4, 27, 256, 3125, 46656, 823543, ••• |
nn. Operators, mappings (functions) of a set into itself |
Binary relations | Digraphs with self-loops |
1, 2, 16, 512, 65536, 33554432, ••• |
2^(n2). This counts also 'no relation' |
Reflexive relations | Irreflexive relations |
1, 1, 4, 64, 4096, 1048576, 1073741824, ••• |
2^(n*(n-1)). The two types have the same count |
Symmetric relations |
1, 2, 8, 64, 1024, 32768, 2097152, ••• |
2^(n*(n+1)/2). Any self loop is optional |
Symmetric & Reflexive relations |
1, 1, 2, 8, 64, 1024, 32768, 2097152, ••• |
2^(n*(n-1)/2). Also Symmetric & Irreflexive |
Transitive relations |
1, 2, 13, 171, 3994, 154303, 9415189, ••• |
|
Preorder relations (quasi-orderings) |
1, 1, 4, 29, 355, 6942, 209527, 9535241, ••• |
Transitive & Reflexive |
Partial-order relations (posets) |
1, 1, 3, 19, 219, 4231, 130023, 6129859, ••• |
|
Total-preorder rels | Weakly ordered partitions |
1, 1, 3, 13, 75, 541, 4683,47293,545835, ••• |
Ordered Bell numbers, or Fubini numbers |
Total-order relations | Bijections |
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ••• |
n! Also permutations | orders of symmetry groups Sn |
Equivalence relations | Set partitions |
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ••• |
Bell numbers B(n) |
Groupoids | Closed Binary Operations (CBOs) |
1, 1, 16, 19683, 4294967296, ••• |
n^n2 = (n^n)n |
Abelian groupoids |
1, 1, 8, 729, 1048576, 30517578125, ••• |
Commutative CBOs. n^(n(n+1)/2) |
Non-associative Abelian groupoids |
0, 0, 2
, 666, 1047436, ••• |
Commutative but non-associative CBOs. |
Non-associative non-Abelian groupoids |
0, 0, 6, 18904, 4293916368, ••• |
Non-commutative & non-associative CBOs. |
Semigroups |
1, 1, 8, 113, 3492, 183732, 17061118, ••• |
Associative CBOs |
Non-Abelian semigroups |
0, 0, 2, 50, 2352, 153002, 15876046, ••• |
Associative but non-commutative CBOs |
Abelian semigroups |
1, 1, 6, 63, 1140, 30730, 1185072, ••• |
Associative and commutative CBOs |
Monoids |
0, 1, 4, 33, 624, 20610, 1252032, ••• |
Associative CBOs with an identity element |
Non-Abelian monoids |
0, 0, 0, 6, 248, 13180, 1018692, ... |
Associative but non-commutative CBOs with identity |
Abelian monoids |
0, 1, 4, 27, 376, 7430, 233340, ••• |
Associative & commutative CBOs with identity element |
Groups |
0, 1, 2, 3, 16, 30, 480, 840, 22080, 68040, ••• |
Associative CBOs with identity and invertible elements |
Abelian groups (commutative) |
0, 1, 2, 3, 16, 30, 360, 840, 15360, 68040, ••• |
|
Non-Abelian groups |
0, 0, 0, 0, 0, 0, 120, 0, 6720, 0, 181440, 0, ... |
Difference of the previous two |
The following items in this section count the isomorphism classes of the specified objects on n labeled nodes |
Binary relations |
1, 2, 10, 104, 3044, 291968, 96928992, ••• |
This counts also 'no relation' |
Enumerations of set-related objects, assuming unlabeled elements (counting types of objects). Set size | order is n=0,1,2,..., unless specified otherwise. |
Compositions c(n) |
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ••• |
For n>0, c(n)=2^(n-1) |
Partitions p(n) |
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ••• |
|
Partitions into distinct parts (strict partitions) |
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, ••• |
Also Partitions into odd parts |
The following items in this section count the isomorphism classes of the specified objects on n unlabeled nodes |
Binary relations |
1, 1, 5, 52, 1522, 145984, 48464496, ••• |
This counts also 'no relation' |
Groupoids (more data are needed!) |
1, 1, 10, 3330, 178981952, ••• |
Closed Binary Operations (CBOs) |
Abelian groupoids |
1, 1, 4, 129, 43968, 254429900, ••• |
Commutative CBOs |
Non-associative Abelian groupoids |
0, 0, 1, 117, 43910, ••• |
Commutative but non-associative CBOs |
Non-associative non-Abelian groupoids |
0, 0, 4, 3189, 178937854, ••• |
Non-commutative non-associative CBOs |
Semigroups |
1, 1, 5, 24, 188, 1915, 28634, 1627672, ••• |
Associative CBOs |
Non-Abelian semigroups |
0, 0, 2, 12, 130, 1590, 26491, 1610381, ••• |
Associative but non-commutative CBOs |
Abelian semigroups |
1, 1, 3, 12, 58, 325, 2143, 17291, 221805, ••• |
Associative & commutative CBOs |
Monoids |
0, 1, 2, 7, 35, 228, 2237, 31559, 1668997 ••• |
Associative CBOs with identity element |
Non-Abelian monoids |
0, 0, 0, 2, 16, 150, 1816, 28922, ... |
Associative but non-commutative CBOs with identity |
Abelian monoids |
0, 1, 2, 5, 19, 78, 421, 2637, ••• |
Associative & commutative CBOs with identity |
Groups |
0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, ••• |
Associative CBOs with identity and inverses |
Abelian groups (commutative) |
0, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, ••• |
Factorizations of n into prime powers |
Non-Abelian groups |
0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 9, ••• |
|
Counting (enumeration) sequences relevant to finite graphs |
Enumerations of graph-related objects, assuming labeled vertices. Number of vertices is n=1,2,3,..., unless specified otherwise. |
Simple graphs with n vertices |
1, 2, 8, 64, 1024, 32768, 2097152, ••• |
2n(n-1)/2 |
Free trees with n vertices |
1, 1, 3, 16, 125, 1296, 16807, 262144, ••• |
nn-2 (Cayley formula) |
Rooted trees with n vertices |
1, 2, 9, 64, 625, 7776, 117649, 2097152, ••• |
nn-1 |
Enumerations of graph-related objects, assuming unlabeled vertices (i.e., counting types of objects). Number of vertices is n=1,2,3,..., unless specified otherwise. |
Simple connected graphs with n vertices |
1, 1, 2, 6, 21, 112, 853, 11117, 261080, ••• |
isomorphism classes |
Free trees with n vertices |
1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, ••• |
isomorphism classes |
Rooted trees with n vertices |
1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, ••• |
isomorphism classes |
Selected sequences of rational numbers |
Bernoulli numbers B0 = 1, B1 = -1/2, B2k+1= 0 for k>1, Bn = δn,0 - Sk=0,(n-1){C(n,k)Bk/(n-k+1)}; x/(ex-1) = Sk≥0{Bnxn/n!}; Example: B10 = 5/66 |
Bn = N/D; n = 2,4,6,... |
N: 1, -1, 1, -1, 5, -691, 7, -3617, 43867, ••• |
D: 6, 30, 42, 30, 66, 2730, 6, 510, 798, ••• |
Harmonic numbers Hn = Sk=1,n{1/k}, in reduced form. Example: H5 = 137/60. |
Hn = N/D; n = 1,2,3,... |
N: 1, 3, 11, 25, 137, 49, 363, 761, 7129, ••• |
D: 1, 2, 6, 12, 60, 20, 140, 280, 2520, ••• |
Other: |
Rationals ≤1, sorted by denominator/numerator |
1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, ••• |
Take the inverse values for rationals ≥ 1 |
Farey fractions Fn (example for order n=5) |
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1, ... |
F1={ 0/1,1/1 }; higher n: interpolate ( a/c,b/d ) → a+b/c+d |
Stern - Brocot sequence (example n=4) |
1/1, 1/2, 2/1, 1/3, 2/3, 3/2, 3/1, 1/4, 2/5, 3/5, 3/4, ... |
Wraps up the binary Stern - Brocot tree |
Some Diophantine solutions and their sequences, such as those related to compositions of powers |
Pythagorean triples (a,b,c), a2 + b2 = c2 |
(3,4,5) (5,12,13) (7,24,25) (8,15,17) |
(9,40,41) (11,60,61) (12,35,37) (13,84,85) (16,63,65) ••• |
Pythagorean quadruples, a2 + b2 + c2 = d2 |
(1,2,2,3) (2,3,6,7) (4,4,7,9) (1,4,8,9) |
(6,6,7,11) (2,6,9,11) (10,10,23,27) (7,14,22,23) ... |
Pythagorean quintuples |
(1,2,4,10,11) (1,2,8,10,13) ... |
etc; there is an infinity of them in each category |
Markov triples, x2 + y2 + z2 = 3xyz |
(1,1,1) (1,1,2) (1,2,5) (1,5,13) (2,5,29) |
(1,13,34) (1,34,89) (2,29,169) (5,13,194) (1,89,233) ... |
Brown number pairs (m,n), n!+1 = m2 |
(5, 4) (11, 5) (71, 7) |
Erdös conjectured that there are no others |
Selected sequences of Figurate Numbers
(formulas are adjusted so that n=1 gives always 1) |
Polygonal (2D). See also A090466 (numbers which are polygonal) and A090467 (numbers which are not). |
Triangular numbers Tn |
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ••• |
n(n+1)/2 |
Square numbers, squares |
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ••• |
n*n |
Pentagonal numbers |
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ••• |
n(3n-1)/2 |
Hexagonal numbers |
1, 6, 15, 28, 45, 66, 91, 120, 153, 190, ••• |
n(2n-1); also cornered hexagonal numbers |
Heptagonal numbers |
1, 7, 18, 34, 55, 81, 112, 148, 189, 235, ••• |
n(5n-3)/2 |
Octagonal numbers |
1, 8, 21, 40, 65, 96, 133, 176, 225, 280, ••• |
n(3n-2) |
Square-triangular numbers |
1, 36, 1225, 41616,1413721,48024900, ••• |
[[(3+2√2)n-(3-2√2)n]/(4√2)]2; both triangular and square |
Pyramidal (2D). Pn(r) = n(n+1)[n(r-2)+(5-r)]/6 for r-gonal base = partial sum of r-gonal numbers. For r=3, see tetrahedral numbers Ten (below) |
Square pyramidal numbers, r=4 |
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ••• |
n(n+1)(2n+1)/6. The only ones that are squares: 1, 4900 |
Pentagonal pyramidal numbers, r=5 |
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ••• |
n2(n+1)/2 |
Hexagonal pyramidal numbers, r=6 |
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ••• |
n(n+1)(4n-1)/6. Also called greengrocer's numbers |
Heptagonal pyramidal numbers, r=7 |
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ••• |
n(n+1)(5n-2)/6 |
Octagonal pyramidal numbers r=8 |
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ••• |
n(n+1)(5n-2)/6 |
Polyhedral (3D) |
Tetrahedral numbers Ten (pyramidal with r=3) |
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ••• |
n(n+1)(n+2)/6. The only Ten squares: 1, 4, 19600 |
Cubic numbers, cubes |
1, 8, 27, 64, 125, 216, 343, 512, 729, ••• |
n3 |
Octahedral numbers |
1, 6, 19, 44, 85, 146, 231, 344, 489, 670, ••• |
n(2n2+1)/3. |
Icosahedral numbers |
1, 12, 48, 124, 255, 456, 742, 1128, ••• |
n(5n2-5n+2)/2. |
Dodecahedral numbers |
1, 20, 84, 220, 455, 816, 1330, 2024, ••• |
n(3n-1)(3n-2)/2. |
Platonic numbers |
1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, ••• |
Union of the above sequences. |
Pentatopic (or pentachoron) numbers |
1, 5, 15, 35, 70, 126, 210, 330, 495, ••• |
n(n+1)(n+2)(n+3)/24 |
Centered polygonal (2D) |
Centered triangular numbers |
1, 4, 10, 19, 31, 46, 64, 85, 109, 136, ••• |
(3n2-3n+2)/2. Click for the primes subset: ••• |
Centered square numbers |
1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ••• |
2n2-2n+1. Click for the primes subset: ••• |
Centered pentagonal numbers |
1, 6, 16, 31, 51, 76, 106, 141, 181, 226, ••• |
(5n2-5n+2)/2. Click for the primes subset: ••• |
Centered hexagonal numbers |
1, 7, 19, 37, 61, 91, 127, 169, 217, 271, ••• |
n3- (n-1)3 = 3n(n-1)+1; also hex numbers |
Centered heptagonal numbers |
1, 8, 22, 43, 71, 106, 148, 197, 253, ••• |
(7n2-7n+2)/2 |
Centered octagonal numbers |
1, 9, 25, 49, 81, 121, 169, 225, 289, ••• |
(2n-1)2; squares of odd numbers |
Centered polyhedral (3D) |
Centered tetrahedral numbers |
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, ••• |
(2n+1)(n2-n+3)/3 |
Centered cube numbers |
1, 9, 35, 91, 189, 341, 559, 855, 1241, ••• |
(2n-1)(n2-n+1) |
Centered octahedral numbers |
1, 7, 25, 63, 129, 231, 377, 575, 833, ••• |
(2n-1)(2n2-2n+3)/3 |
Selected geometry constants |
Named and various notable geometry constants |
Area doubling (Pythagora's) constant |
1.414 213 562 373 095 048 801 688 ••• |
√2. Area-doubling scale factor |
Area tripling (Theodorus's) constant |
1.732 050 807 568 877 293 527 446 ••• |
√3. Area-tripling scale factor |
Volume doubling (Delos) constant |
1.259 921 049 894 873 164 767 210 ••• |
21/3. Volume-doubling scale factor |
Volume tripling constant |
1.442 249 570 307 408 382 321 638 ••• |
31/3. Volume-tripling scale factor |
Minimum area of a constant-width figure |
0.704 770 923 010 457 972 467 598 ••• |
(pi - sqrt(3))/2 for width = 1. See Reuleaux triangle |
Moser's worm constant |
0.232 239 210 ••• ? |
Area of smallest region accomodating any curve of length 1 |
Square-drill constant |
0.987 700 390 736 053 460 131 999 ••• |
Portion of square area covered by a Reuleaux drill |
Universal parabolic constant, log(1+√2)+√2 |
2.295 587 149 392 638 074 034 298 ••• #t |
= asinh(1)+√2. Arc-to-latus_rectum ratio in any parabola. |
Gravitoid constant |
1.240 806 478 802 799 465 254 958 ••• |
2√(2/(3√3)). Width/Depth of gravitoid curve or gravidome |
Notable plane angles in radians and degrees |
Magic angle φ = acos(1/√3) = atan(√2)m |
0.955 316 618 124 509 278 163 857 ••• |
Degrees: 54.735 610 317 245 345 684 622 999 ••• |
Complementary magic angle φ'm = π/2 - φm |
0.615 479 708 670 387 341 067 464 ••• |
Degrees: 35.264 389 682 754 654 315 377 000 ... |
Tetrahedral angle θm = 2φ = π - acos(1/3)m |
1.910 633 236 249 018 556 327 714 ••• |
Degrees: 109.471 220 634 490 691 369 245 999 ••• |
Complemetary tetrahedral angle θ'm = π - θm |
1.230 959 417 340 774 682 134 929 ••• |
Degrees: 70.528 779 365 509 308 630 754 000 ... |
Notable solid angles in steradians |
Square on a sphere with sides of 1 radian |
0.927 689 475 322 313 640 795 613 ••• |
4*asin(sin(1/2)^2) |
Square on a sphere with sides of 1 degree |
3.046 096 875 119 366 637 825 ••• e-4 |
4 asin(sin(α/2)sin(β/2)); α = β = 1 degree = π/180 |
Spherical triangle with sides of 1 radian |
0.495 594 895 733 964 750 698 857 ••• |
See Huilier's formula |
Spherical triangle with sides of 1 degree |
1.319 082 346 912 923 487 761 ... e-4 |
See Huilier's formula |
Sphere and hyper-spheres in n = 2, 3, 4, ..., 10 Euclidean dimensions |
2D-Disk | Circle. |
Area / Radius2 = V(2) = π |
3.141 592 653 589 793 238 462 643 ••• #t |
Area of a disk with unit radius |
Radius / Area1/2 = Rv(2) = 1/√π |
0.564 189 583 547 756 286 948 079 ••• |
Radius of a sphere with unit area |
Circumference / Radius2 = S(2) = 2π |
6.283 185 307 179 586 476 925 286 ••• |
|
Radius / Circumference = Rs(2) = 1/(2π) |
0.159 154 943 091 895 335 768 883 ••• |
Radius of a disk with unit circumference |
3D-Sphere, the Queen of all bodies. |
Volume / Radius3 = V(3) = 4π/3 |
4.188 790 204 786 390 984 616 857 ••• |
Volume of a sphere with unit radius |
Radius / Volume1/3 = Rv(3) = (3/(4π))1/3 |
0.620 350 490 899 400 016 668 006 ••• |
Radius of a sphere with unit volume |
Surface / Radius2 = S(3) = 4π |
12.566 370 614 359 172 953 850 573 ••• |
See also surface indices. |
Radius / Surface1/2 = Rs(3) = 1/(4π)1/2 |
0.282 094 791 773 878 143 474 039 ••• |
Radius of a sphere with unit surface |
nD-Hyperspheres in n>3 dimensions (see disk and sphere for n≤3): V(n) = Volume/Radiusn and Rv(n) = Radius/Volume1/n =1/ V(n)1/n. |
V(4) = π2/2 |
4.934 802 200 544 679 309 417 245 ••• |
Rv(4) = 0.670 938 266 965 413 916 222 789 ... |
V(5) = 8π2/15, the largest of them all |
5.263 789 013 914 324 596 711 728 ••• |
Rv(5) = 0.717 365 200 794 964 260 816 144 ... |
V(6) = π3/6 |
5.167 712 780 049 970 029 246 052 ••• |
Rv(6) = 0.760 531 030 982 050 466 116 446 ... |
V(7) = 16π3/105 |
4.724 765 970 331 401 169 596 390 ••• |
Rv(7) = 0.801 050 612 642 752 206 249 327 ... |
V(8) = π4/24 |
4.058 712 126 416 768 218 185 013 ••• |
Rv(8) = 0.839 366 184 571 988 024 335 065 ... |
V(9) = 32π4/945 |
3.298 508 902 738 706 869 382 106 ... |
Rv(9) = 0.875 808 485 845 386 610 603 654 ... |
V(10) = π5/120 |
2.550 164 039 877 345 443 856 177 ... |
Rv(10) = 0.910 632 588 621 402 549 723 631 ... |
nD-Hyperspheres in n>3 dimensions (see disk and sphere for n≤3): S(n) = Surface/Radius(n-1) and Rs(n) = Radius/Surface1/(n-1) = 1/S(n)1/(n-1). |
S(4) = 2π2 |
19.739 208 802 178 717 237 668 981 ••• |
Rs(4) = 0.370 018 484 153 678 110 702 808 ... |
S(5) = 8π2/3 |
26.318 945 069 571 622 983 558 642 ••• |
Rs(5) = 0.441 502 208 724 281 499 461 813 ... |
S(6) = π3 |
31.006 276 680 299 820 175 476 315 ••• |
Rs(6) = 0.503 164 597 143 259 315 750 866 ... |
S(7) = 16π3/15, the largest of all of them |
33.073 361 792 319 808 187 174 736 ••• |
Rs(7) = 0.558 153 445 139 655 576 810 770 ... |
S(8) = π4/3 |
32.469 697 011 334 145 745 480 110 ••• |
Rs(8) = 0.608 239 384 088 163 635 224 747 ... |
S(9) = 32π4/105 |
29.686 580 124 648 361 824 438 958 ... |
Rs(9) = 0.654 530 635 654 477 183 429 699 ... |
S(10) = π5/12 |
25.501 640 398 773 454 438 561 775 ... |
Rs(10) = 0.697 773 792 101 567 380 147 922 ... |
Cones: a cone has a polar angle and subtends a solid angle which is a fraction of the full solid angle of 4π |
Solid angle fractions f cut-out by cones with a given polar angle θ, f = (1 - cosθ)/2. The subtended solid angle in steradians is therefore 4π*f |
θ = θ'm, the complementary tetrahedral angle |
0.333 333 333 333 333 333 333 333 ••• |
1/3 exact |
θ = 60 degrees |
0.25 |
1/4 exact |
θ = 1 radian |
0.229 848 847 065 930 141 299 531 ••• |
(1-cos(1))/2 |
θ = φm, the magic angle |
0.211 324 865 405 187 117 745 425 ••• |
(1-√(1/3))/2; also the Knuth's constant |
θ = 45 degrees |
0.146 446 609 406 726 237 799 577 ... |
(1-√(1/2))/2 |
θ = φ'm, the complementary magic angle |
0.091 751 709 536 136 983 633 785 ... |
(1-√(2/3))/2 |
θ = 30 degrees |
0.066 987 298 107 780 676 618 138 ... |
(1-√(3/4))/2 |
θ = 15 degrees |
0.017 037 086 855 465 856 625 128 ... |
(1-sqrt((1+√(3/4))/2))/2 |
θ = 0.5 degrees (base disk of 1 degree diameter) |
1.903 846 791 435 563 132 241 ...e-5 |
Steradians: 2.392 444 437 413 785 769 530 ...e-4 |
Polar angles θ of cones cutting a given fraction f of the full solid angle, θ = acos(1-2f) |
f = (Φ-1)/Φ, where Φ is the golden-ratio |
1.332 478 864 985 030 510 208 009 ••• |
Degrees: 76.345 415 254 024 494 986 936 602 ••• |
f = 1/3 |
1.230 959 417 340 774 682 134 929 ••• |
The complemetary tetrahedral angle. Degrees: 70.528 779 ••• |
f = 1/4 |
1.047 197 551 196 597 746 154 214 ••• |
π/3. Degrees: 60 |
f = 0.1 ( 10%) |
0.643 501 108 793 284 386 802 809 ••• |
Degrees: 36.869 897 645 844 021 296 855 612 ... |
f = 0.01 ( 1%) |
0.200 334 842 323 119 592 691 046 ... |
Degrees: 11.478 340 954 533 572 625 029 817 ... |
f = 1e-6 ( 1 ppm) |
0.002 000 000 333 333 483 333 422 ... |
Degrees: 0.114 591 578 124 766 407 153 079 ... |
Perimeters of ellipses with major semi-axis 1, and minor semi-axis b (area = πab). Special cases: b=0 ... flat ellipse, b = 1 ... circle. |
b = 1/Φ, where Φ is the golden-ratio |
5.154 273 178 025 879 962 492 835 ... |
Golden ellipse |
b = 0.613 372 647 073 913 744 075 540 ... |
π+2 = mean of flat ellipse and circle |
Mid-girth ellipse differs from golden ellipse by < 1% |
b = 1/√2 |
5.402 575 524 190 702 010 080 698 ... |
Balanced ellipse (interfocal_distance = minor_axis) |
b = 1/2, the midway ellipse |
4.844 224 110 273 838 099 214 251 ... |
b = 1/3: 4.454 964 406 851 752 743 376 500 ... |
b = 3/4 |
5.525 873 040 177 376 261 321 396 ... |
b = 2/3: 5.288 479 863 096 863 263 777 221 ... |
b = 1/4 |
4.289 210 887 578 417 111 478 604 ... |
b = 1/5: 4.202 008 907 937 800 188 939 832 ... |
b = 1/6 |
4.150 013 265 005 047 157 825 880 ... |
b = 1/7: 4.116 311 284 366 438 220 003 847 ... |
b = 1/8 |
4.093 119 575 024 437 585 615 711 ... |
b = 1/9: 4.076 424 191 956 689 482 335 178 ... |
b = 1/10 |
4.063 974 180 100 895 742 557 793 ... |
b = 0.01: 4.001 098 329 722 651 860 747 464 ... |
b = 0.001 |
4.000 015 588 104 688 244 610 756 ... |
b = 0.0001: 4.000 000 201 932 695 375 419 076 ... |
Surface-to-Volume indices: σ3 = Surface/Volume2/3 (i.e., surface per unit volume) |
For CLOSED 3D bodies, sorted by surface index value: |
Sphere |
4.835 975 862 049 408 922 150 900 ••• |
(36π)1/3; the absolute minimum for closed bodies |
Icosahedron, regular |
5.148 348 556 199 515 646 330 812 ••• |
(5√3)/[5(3+√5)/12]2/3; a Platonic solid |
Dodecahedron, regular |
5.311 613 997 069 083 669 796 666 ••• |
(3√(25+10√5))/[(15+7√5)/4]2/3; a Platonic solid |
Closed cylinder with smallest σ3 |
5.535 810 445 932 085 257 290 411 ••• |
3*(2π)1/3; Height = Diameter. Cannery constant. |
Octahedron, regular |
5.719 105 757 981 619 442 544 453 ••• |
(2√3)/[(√2)/3]2/3; a Platonic solid |
Cube |
6.000 exact |
A Platonic solid |
Cone (closed) with smallest σ3 |
6.092 947 785 379 555 603 436 316 ••• |
6*(π/3)1/3; Height=BaseDiameter*√2. Frozon cone constant. |
Tetrahedron, regular |
7.205 621 731 056 016 360 052 792 ••• |
(√3)/[(√2)/12]2/3; a Platonic solid |
For OPEN 3D bodies, sorted by surface index value: |
Open cylinder (tube) |
3.690 540 297 288 056 838 193 607 ••• |
2*(2π)1/3, to be multiplied by (Length/Diameter)1/3 |
Open cone with smallest σ3 |
4.188 077 948 623 138 128 725 597 ••• |
3*√3*(π/6)1/3; Height = BaseRadius*√2. TeePee constant. |
Half-closed cylinder (cup/pot) with smallest σ3 |
4.393 775 662 684 569 789 060 427 ••• |
3π1/3; Height = Radius. Cooking pot constant. |
Perimeter-to-Area indices for CLOSED 2D figures, σ2 = Perimeter/Area1/2 (i.e., perimeter per unit area), sorted by value: |
Disk |
3.544 907 701 811 032 054 596 334 ••• |
2√π; this is the absolute minimum for all figures |
Regular heptagon |
3.672 068 807 445 035 069 314 605 ... |
Regular n-gon: σ2 = 2*sqrt(n*tan(π/n)) = minimum for all n-gons |
Regular hexagon |
3.722 419 436 408 398 395 764 874 ... |
2*sqrt(6*tan(π/6)); the minimum for all hexagons. |
Regular pentagon |
3.811 935 277 533 869 372 492 013 ... |
2*sqrt(5*tan(π/5)); the minimum for all pentagons. |
Square |
4.000 exact |
Also the minimum for disk wedges, attained for angle of 2 rad. |
Equilateral triangle |
4.559 014 113 909 555 283 987 126 ••• |
6/√(√3); the minimum for all triangles |
Packing ratios (monodispersed) |
Densest packing ratios Δn in the n-dimensional Euclidean space by (n-1)-dimensional spheres. Δ1 = 1. Values for n>3 are [very likely] conjectures.
Also listed are the powers h(n) = (γn)n of Hermite constants γn = 4(Δn / V(n))2/n, where V(n) is the unit hypersphere volume. |
Δ2 = π/(2√3), Kepler constant for disks |
0.906 899 682 117 089 252 970 392 ••• |
h(n) = 4/3. See Disks-packing. |
Δ3 = π/(3√2), Kepler constant for spheres |
0.740 480 489 693 061 041 169 313 ••• |
hcp / fcc lattices (see below). h(n) = 2. See Spheres-packing. |
Δ4 = π2/16, Korkin-Zolotarev constant |
0.616 850 275 068 084 913 677 155 ••• |
h(n) = 4. |
Δ5 = (π2√2)/30, Korkin-Zolotarev constant |
0.465 257 613 309 258 635 610 504 ••• |
h(n) = 8. |
Δ6 = π3(√3)/144 |
0.372 947 545 582 064 939 563 477 ••• |
h(n) = 64/3. |
Δ7 = π3/105 |
0.295 297 873 145 712 573 099 774 ••• |
h(n) = 64. |
Δ8 = π4/384 |
0.253 669 507 901 048 013 636 563 ••• |
h(n) = 256. |
Densest random packing ratios in the n-dimensional Euclidean space by (n-1)-dimensional spheres. Known only approximately. |
2D disks, densest random |
0.772 ± 0.002 |
Empirical & theoretical |
3D spheres, densest random |
0.634 ± 0.007 |
Empirical & theoretical |
Atomic packing factors (APF) of crystal lattices (3D). |
Hexagonal close packed (hcp) |
0.740 480 489 693 061 041 169 313 ••• |
and face-centered cubic (fcc). π/(3√2). |
Body-centered cubic (bcc) |
0.680 174 761 587 831 693 972 779 ••• |
(π√3)/8. |
Simple cubic |
0.523 598 775 598 298 873 077 107 ••• |
π/6. In practice found only in polonium. |
Diamond cubic |
0.340 087 380 793 915 846 986 389 ••• |
(π√3)/16. This is the smallest possible APF. |
Platonic solids data, except those already listed above, such as surface-to-volume indices |
Platonic solids: Tetrahedron, regular, 4 vertices, 6 edges, 4 faces, 3 edges/vertex, 3 edges/face, 3 faces/vertex, 0 diagonals. |
Volume / edge3 |
0.117 851 130 197 757 920 733 474 ••• |
(√2)/12 |
Surface / edge2 |
1.732 050 807 568 877 293 527 446 ••• |
√3; see also surface indices. |
Height / edge |
0.816 496 580 927 726 032 732 428 ••• |
(√6)/3 |
Angle between an edge and a face |
0.955 316 618 124 509 278 163 857 ••• |
magic angle φm (see above) |
Dihedral angle (between adjacent faces) |
1.230 959 417 340 774 682 134 929 ••• |
complementary tetrahedral angle θ'm (see above) |
Tetrahedral angle (vertex-center-vertex) |
1.910 633 236 249 018 556 327 714 ••• |
θm (see above) |
Circumscribed sphere radius / edge |
0.612 372 435 695 794 524 549 321 ••• |
Circumradius = (√6)/4, congruent with vertices |
Midsphere radius / edge |
0.353 553 390 593 273 762 200 422 ••• |
Midradius = 1/√8, tangent to edges |
Inscribed sphere radius / edge |
0.204 124 145 231 931 508 183 107 ••• |
Inradius = (√6)/12, tangent to faces; Circumradius/Inradius = 3 |
Vertex solid angle |
0.551 285 598 432 530 807 942 144 ••• |
acos(23/27) steradians |
Polar angle of circumscribed cone |
0.615 479 708 670 387 341 067 464 ••• |
complementary magic angle φ'm (see above) |
Solid angle of circumscribed cone |
1.152 985 986 532 130 094 749 141 ... |
2π(1-sqrt(2/3)) steradians |
Hamiltonian cycles |
3 |
Acyclic Hamiltonian paths: 0 |
Platonic solids: Octahedron, regular, 6 vertices, 12 edges, 8 faces, 4 edges/vertex, 3 edges/face, 4 faces/vertex, 3 diagonals of length √2. |
Volume / edge3 |
0.471 404 520 791 031 682 933 896 ••• |
(√2)/3 |
Surface / edge2 |
3.464 101 615 137 754 587 054 892 ••• |
2√3; see also surface indices. |
Dihedral angle (between adjacent faces) |
1.910 633 236 249 018 556 327 714 ••• |
tetrahedral angle (see above) |
Circumscribed sphere radius / edge |
0.707 106 781 186 547 524 400 844 ••• |
Circumradius = 1/√2, congruent with vertices |
Midsphere radius / edge |
0.5 exact |
Midradius, tangent to edges |
Inscribed sphere radius / edge |
0.408 248 290 463 863 016 366 214 ••• |
1/√6; Tangent to faces. Circumradius/Inradius = √3 |
Vertex solid angle |
1.359 347 637 816 487 748 385 570 ••• |
4 asin(1/3) steradians |
Polar angle of circumscribed cone |
0.785 398 163 397 448 309 615 660 ••• |
π/4 = atan(1); Degrees: 45 exact |
Solid angle of circumscribed cone |
1.840 302 369 021 220 229 909 405 ... |
2π(1-sqrt(1/2)) steradians |
Hamiltonian cycles |
16 |
Acyclic Hamiltonian paths: 24 (8 span each body diagonal) |
Platonic solids: Cube, or Hexahedron, 8 vertices, 12 edges, 6 faces, 3 edges/vertex, 4 edges/face, 3 faces/vertex, 4 diagonals of length √3. |
Body diagonal / edge |
1.732 050 807 568 877 293 527 446 ••• |
√3. Diagonal of a cube with unit side |
Body diagonal / Face diagonal |
1.224 744 871 391 589 049 098 642 ••• |
sqrt(3/2) |
Angle between body diagonal and an edge |
0.955 316 618 124 509 278 163 857 ••• |
magic angle φm (see above) |
Angle between body and face diagonals |
0.615 479 708 670 387 341 067 464 ••• |
complementary magic angle φ'm (see above) |
Circumscribed sphere radius / edge |
0.866 025 403 784 438 646 763 723 ••• |
Circumradius = (√3)/2, congruent with vertices |
Midsphere radius / edge |
0.707 106 781 186 547 524 400 844 ••• |
Midradius = 1/√2, tangent to edges |
Inscribed sphere radius / edge |
0.5 exact |
Circumradius/Inradius = √3 |
Vertex solid angle |
1.570 796 326 794 896 619 231 321 ••• |
π/2 steradians |
Polar angle of circumscribed cone |
0.955 316 618 124 509 278 163 857 ••• |
magic angle φm (see above) |
Solid angle of circumscribed cone |
2.655 586 578 711 150 775 737 130 ••• |
2π(1-sqrt(1/3)) steradians |
Hamiltonian cycles |
6 |
Acyclic Hamiltonian paths: 24 (6 span each body diagonal) |
Platonic solids: Icosahedron, regular, 12 vertices, 30 edges, 20 faces, 5 edges/vertex, 3 edges/face, 5 faces/vertex, 6 main diagonals, 30 short diagonals. |
Volume / edge3 |
2.181 694 990 624 912 373 503 822 ••• |
5Φ2/6 = 5(3 + √5)/12, where Φ is the golden ratio |
Surface / edge2 |
8.660 254 037 844 386 467 637 231 ••• |
5√3 = 10*A010527. See also surface indices. |
Dihedral angle (between adjacent faces) |
2.411 864 997 362 826 875 007 846 ••• |
2.atan(Φ2); Degrees: 138.189 685 104 221 401 934 142 083 ... |
Main diagonal / edge |
1.902 113 032 590 307 144 232 878 ••• |
2*Circumradius = ξΦ = sqrt(2+Φ), ξ being the associate of Φ. |
Circumscribed sphere radius / edge |
0.951 056 516 295 153 572 116 439 ••• |
Circumradius = ξΦ/2 = sqrt((5+sqrt(5))/8), ξ as above. |
Midsphere radius / edge |
0.809 016 994 374 947 424 102 293 ••• |
Midradius = Φ/2, tangent to edges |
Inscribed sphere radius / edge |
0.755 761 314 076 170 730 480 133 ••• |
Inradius = Φ2/(2√3) = sqrt(42+18√5)/12 |
Vertex solid angle |
2.634 547 026 044 754 659 651 303 ••• |
2π - 5asin(2/3) steradians |
Polar angle of circumscribed cone |
1.017 221 967 897 851 367 722 788 ••• |
atan(Φ); Degrees: 58.282 525 588 538 994 675 ... |
Solid angle of circumscribed cone |
2.979 919 307 985 462 371 739 387 ... |
2π(1-sqrt((5-√5)/10)) steradians |
Hamiltonian cycles |
1280 |
Acyclic Hamiltonian paths: 22560 (6*720 + 30*608) |
Platonic solids: Dodecahedron, regular, 20 vertices, 30 edges, 12 faces, 3 edges/vertex, 5 edges/face, 3 faces/vertex; 10 main, 30 secondary, and 60 short diagonals. |
Volume / edge3 |
7.663 118 960 624 631 968 716 053 ••• |
(5Φ3)/(2ξ2) = (15+7√5)/4, ξ being the associate of Φ |
Surface / edge2 |
20.645 728 807 067 603 073 108 143 ••• |
15Φ/ξ = 3.sqrt(25+10√5); see also surface indices. |
Dihedral angle (between adjacent faces) |
2.034 443 935 795 702 735 445 577 ••• |
2atan(Φ); Degrees: 116.565 051 177 077 989 351 572 193 ... |
Main diagonal / edge |
2.080 251 707 688 814 708 935 335 ... |
2*Circumradius = Φ√3 |
Circumscribed sphere radius / edge |
1.401 258 538 444 073 544 676 677 ••• |
Circumradius = Φ (√3)/2 = (sqrt(15)+sqrt(3))/4 |
Midsphere radius / edge |
1.309 016 994 374 947 424 102 293 ••• |
Midradius = Φ2/2, tangent to edges |
Inscribed sphere radius / edge |
1.113 516 364 411 606 735 194 375 ••• |
Inradius = Φ2/(2ξ) = sqrt(250+110√5)/20 |
Vertex solid angle |
2.961 739 153 797 314 967 874 090 ••• |
π - atan(2/11) steradians |
Polar angle of circumscribed cone |
1.205 932 498 681 413 437 503 923 ••• |
acos(1/(Φ√3)); Degrees: 69.094 842 552 110 700 967 ... |
Solid angle of circumscribed cone |
4.041 205 995 440 192 430 566 404 ... |
2π(1-1/(Φ√3)) steradians |
Hamiltonian cycles |
30 |
Acyclic Hamiltonian paths: ? coming soon |
Selected geometry sequences |
Constructible regular polygons |
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, ••• |
2^m*k, where k is any product of distinct Fermat primes. |
Non-constructible regular polygons |
7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, ••• |
Complement of the above sequence. |
Constants related to number-theoretical functions
|
Riemann zeta function ζ(s) = Sk≥0{k-s} = (1/Γ(s)).Ix=0,∞{(xs-1)/(ex-1} = Pprime p{1/(1-p-s)}. It has a single pole at s = 1 (simple, with residue 1). Ls→∞{η(s)} = 1
|
Exact values & trivial zeros (n is integer >0) |
ζ(0) = -0.5, ζ(-1) = ζ(-13) = -1/12 |
ζ(-2n) = 0, ζ(-n) = -Bn+1/(n+1). Bn are Bernoulli numbers |
ζ(-1/2) = -ζ(3/2)/(4π) |
-0.207 886 224 977 354 566 017 306 ••• |
ζ(-3/2) = -0.025 485 201 889 833 035 949 542 ••• |
ζ(+1/2) |
-1.460 354 508 809 586 812 889 499 ••• |
ζ(+3/2) = 2.612 375 348 685 488 343 348 567 ••• |
ζ(2) = π2 /6. ζ(2n) = |B2n|(2π)2n/(2(2n)!) |
1.644 934 066 848 226 436 472 415 ••• #t |
ζ(3) = 1.202 056 903 159 594 285 399 738 ••• #t (Apéry's) |
ζ(4) = π4 /90 |
1.082 323 233 711 138 191 516 003 ••• #t |
ζ(5) = 1.036 927 755 143 369 926 331 365 ••• |
ζ(6) = π6 /945 |
1.017 343 061 984 449 139 714 517 ••• #t |
ζ(7) = 1.008 349 277 381 922 826 839 797 ••• |
ζ(8) = π8 /9450 |
1.004 077 356 197 944 339 378 685 ••• #t |
ζ(9) = 1.002 008 392 826 082 214 417 852 ••• |
ζ(10) = π10 /93555 |
1.000 994 575 127 818 085 337 145 ••• #t |
ζ(11) = 1.000 494 188 604 119 464 558 702 ••• |
ζ(12) = π12 (691/638512875) |
1.000 246 086 553 308 048 298 637 ••• #t |
ζ(13) = 1.000 122 713 347 578 489 146 751 ••• |
ζ( i) , real and imaginary parts: |
0.003 300 223 685 324 102 874 217 ••• |
- i 0.418 155 449 141 321 676 689 274 ••• |
Local extrema along the negative real axis (location in central column, value in last column).
Remember that ζ(-2n) = 0 for any integer n > 0
|
1-st Maximum |
-2.717 262 829 204 574 101 570 580 ••• |
0.009 159 890 119 903 461 840 056 ••• |
1-st minimum |
-4.936 762 108 594 947 868 879 358 ... |
-0.003 986 441 663 670 750 431 710 ... |
2-nd Maximum |
-7.074 597 145 007 145 734 335 798 ... |
0.004 194 001 958 045 626 474 146 ... |
2-nd minimum |
-9.170 493 162 785 828 005 353 111 ... |
-0.007 850 880 657 688 685 582 151 ... |
3-rd Maximum |
-11.241 212 325 375 343 510 874 637 ... |
0.022 730 748 149 745 047 522 814 ... |
3-rd minimum |
-13.295 574 569 032 520 384 733 960 ... |
-0.093 717 308 522 682 935 623 713 ... |
4-th Maximum |
-15.338 729 073 648 281 821 158 316 ... |
0.520 589 682 236 209 120 459 027 ... |
4-th minimum |
-17.373 883 342 909 485 264 559 273 ... |
-3.743 566 823 481 814 727 724 234 ... |
5-th Maximum |
-19.403 133 257 176 569 932 332 310 ... |
33.808 303 595 651 664 653 888 821 ... |
5-th minimum |
-21.427 902 249 083 563 532 039 024 ... |
-374.418 851 865 762 246 500 180 ... |
Imaginary parts of first nontrivial roots (for more, see OEIS Wiki). Note: they all have real parts +0.5. Trivial roots are the even negative integers
|
1st root |
14.134 725 141 734 693 790 457 251 ••• |
2nd root: 21.022 039 638 771 554 992 628 479 ••• |
3rd root |
25.010 857 580 145 688 763 213 790 ••• |
4th root: 30.424 876 125 859 513 210 311 897 ••• |
5th root: |
32.935 061 587 739 189 690 662 368 ••• |
6th root: 37.586 178 158 825 671 257 217 763 ... |
7th root: |
40.918 719 012 147 495 187 398 126 ... |
8th root: 43.327 073 280 914 999 519 496 122 ... |
9th root: |
48.005 150 881 167 159 727 942 472 ... |
10th root: 49.773 832 477 672 302 181 916 784 ... |
Expansion about the pole at s = 1: ζ(s) = 1/(s-1) + Sn=0,∞{(-1)nγn(s-1)n/n!}, where γ0 ≡ γ is the Euler-Mascheroni constant, and γn, n > 0, are the Stieltjes constants
|
Stieltjes constant γ1 |
-0.072 815 845 483 676 724 860 586 ••• |
In general: γn = Lm→∞{Sk=1,m{logn(k)/k}-lnn+1(m)/(n+1)} |
γ2 |
-0.009 690 363 192 872 318 484 530 ••• |
γ3 = -0.002 053 834 420 303 345 866 160 ••• |
γ4 |
0.002 325 370 065 467 300 057 468 ••• |
γ5 = -0.000 793 323 817 301 062 701 753 ••• |
γ6 |
-0.000 238 769 345 430 199 609 872 ••• |
γ7 =-0.000 527 289 567 057 751 046 074 ••• |
Derivative: ζ'(s) ≡ d ζ(s)/ds = Sn=1,∞{log(n)/ns}. In what follows, A is the Glaisher-Kinkelin constant and γ the Euler constant
|
ζ'(-1) |
-0.165 421 143 700 450 929 213 919 ••• |
1/12 - log(A); called sometimes Kinkelin constant |
ζ'(-1/2) |
-0.360 854 339 599 947 607 347 420 ••• |
|
ζ'(0) |
-0.918 938 533 204 672 741 780 329 ••• |
-log(2π)/2 |
ζ'(+1/2) |
-3.922 646 139 209 151 727 471 531 ••• |
ζ(1/2)(π+2.γ+6.log(2)+2.log(π))/4 |
ζ'(2) |
-0.937 548 254 315 843 753 702 574 ••• |
π2(γ + log(2π) - 12.A)/6 |
ζ'( i) , real and imaginary parts: |
0.083 406 157 339 240 564 143 845 ••• |
- i 0.506 847 017 167 569 081 923 677 ••• |
Dirichlet eta function η(s) = -Sk>0{(-1)k k-s} = (1 - 21-s )ζ(s) = (1/Γ(s)).Ix=0,∞{(xs-1)/(ex+1}. Ls→∞{η(s)} = 1. Below, Bn are Bernoulli numbers. |
Exact values & trivial zeros (n is integer >0) |
η(0) = 1/2, η(-1) = 1/4, η(1) = log(2) |
η(-2n) = 0, η(-n) = (2n+1-1)Bn+1/(n+1) |
η(1) = log(2) |
0.693 147 180 559 945 309 417 232 ••• #t |
Note that at s=1, ζ(s) is not defined, while η(s) is smooth |
η(2) = π2 /12 |
0.822 467 033 424 113 218 236 207 ••• #t |
η(2n) = π2n[(22n-1-1)/(2n)!].|B2n| |
η(3) = 3.ζ(3)/4 |
0.901 542 677 369 695 714 049 803 ••• #t |
Note that ζ(3) is the Apéry's constant |
η(4) = π4 (7/720) |
0.947 032 829 497 245 917 576 503 ••• #t |
η(6) = π6 (31/30240), η(8) = π8 (127/1209600), etc |
η( i) , real and imaginary parts: |
0.532 593 181 763 096 166 570 965 ••• |
i 0.229 384 857 728 525 892 457 886 ••• |
Derivative: η' ≡ d η(s)/ds = Sk=1,∞{(-1)k log(k).k-s} = 21-s log(2)ζ(s)+(1-21-s)ζ'(s) |
η'(-1) |
0.265 214 370 914 704 351 169 348 ••• |
3.log(A) - log(2)/3 - 1/4 |
η'(0) |
0.225 791 352 644 727 432 363 097 ••• |
log(sqrt(π/2)) |
η'(1) |
0.159 868 903 742 430 971 756 947 ••• |
log(2)(γ - log(√2)) |
η'(2) |
0.101 316 578 163 504 501 886 002 ••• |
π2(γ + log(π) + log(4) - 12.log(A))/12 |
η'( i) , real and imaginary parts: |
0.235 920 948 050 440 923 634 079 ••• |
- i 0.069 328 260 390 357 410 164 243 ••• |
Dedekind eta function η(τ) = q^(1/24)*Pn>0{(1-q^n)}, where q=exp(2 π τ i) is the 'nome'. This function is a modular form. |
η(x i) maximum: Location xmax |
0.523 521 700 017 999 266 800 534 ••• |
For real x>0, η(x i)>0 is real, η(0)=0, and limx→∞η(x i)=0 |
η(x i) maximum: Value at xmax |
0.838 206 031 992 920 559 691 418 ••• |
In this complex-plane cut, the maximum is unique |
η( i) |
0.768 225 422 326 056 659 002 594 ••• |
Γ(1/4) /( 2 π3/4); one of four values found by Ramanujan: |
η( i /2) = 21/8 η( i) |
0.837 755 763 476 598 057 912 365 ••• |
Γ(1/4) / (27/8 π3/4) |
η(2 i) = η( i) / 23/8 |
0.592 382 781 332 415 885 290 363 ••• |
Γ(1/4) / (211/8 π3/4) |
η(4 i) = (√2 -1)1/4 η( i) / 213/16 |
0.350 919 807 174 143 236 430 229 ••• |
(√2 -1)1/4 Γ(1/4) / (229/16 π3/4) |
Constants related to selected complex functions.
Notes: y(z) is a stand-in for the function. Integral is a stand-in for anti-derivative, up to a constant.
|
Exponential exp(z) = Sk≥0{zk/k!}; exp(y+z) = exp(y)exp(z); integer n: exp(n.z) = exp n(z); exp(n.z.i) = cos(n.z)+sin(n.z).i = (cos(z)+sin(z).i)n.
|
More:
exp(z) equals its own derivative. Right-inverse funtions Log(z,K)=log(z)+2πKi; left-inverse function log(z). Diff.eq. y' = y.
|
exp(1) = e, the Euler number |
2.718 281 828 459 045 235 360 287 ••• #t |
Other: exp(πk i)=(-1)k for any integer k, etc.; see e spin-offs. |
atan(e) |
1.218 282 905 017 277 621 760 461 ••• |
For real x>0, y=atan(e).x is tangent to exp(x), kissing it at x=1 |
exp( ±i) = cos(1) ± i sin(1) = cosh(i) ± sinh(i) |
0.540 302 305 868 139 717 400 936 ••• |
±i 0.841 470 984 807 896 506 652 502 ••• #t
|
Some fixed points of exp(z): exp(z) = z, or z = log(z)+2πK i. They form a denumerable set, but none is real-valued. |
z±1, relative to K=0. Lambert W0(-1) |
0.318 131 505 204 764 135 312 654 ••• |
±i 1.337 235 701 430 689 408 901 162 ••• |
z±3, relative to K=±1. Equals W±1(-1) |
2.062 277 729 598 283 884 978 486 ••• |
±i 7.588 631 178 472 512 622 568 923 ••• |
z±5, relative to K=±2. Equals W±2(-1) |
2.653 191 974 038 697 286 601 106 ••• |
±i 13.949 208 334 533 214 455 288 918 ••• |
Some fixed points of -exp(z): -exp(z) = z, or z = log(-z)+2πK i. They form a denumerable set, but only one is real-valued. |
z0, real, relative to K=0. Equals -W0(1) |
-0.567 143 290 409 783 872 999 968 ••• |
-z(0) is a solution of exp(-x) = x in R; Omega constant |
z±2, relative to K=±1. Equals -W±1(1) |
1.533 913 319 793 574 507 919 741 ••• |
±i 4.375 185 153 061 898 385 470 906 ••• |
z±4, relative to K=±2. Equals -W±2(1) |
2.401 585 104 868 002 884 174 139 ••• |
±i 10.776 299 516 115 070 898 497 103 ••• |
Natural logarithm log(z)≡Log(z,0). For integer K, Log(z,K)=log(z)+2πK i is a multivalued right inverse of exp(z). Conventional cut is along negative real axis. |
More:
log(1/z)=-log(z); log(1) = 0, log(± i) = (π/2)i, log(e) = 1. Derivative = 1/z. Integral = z(log(z)-1). Inverse = exp(z). Diff.eqs: y'z = 1, y'exp(y) = 1, y''+(y')2 = 0.
|
atan(1/e) = π/2 - atan(e) |
0.352 513 421 777 618 997 470 859 ••• |
For real x, y=c.x kisses exp(x) at [1,e] when c=atan(1/e). |
Trigonometric (or circular) functions trig(z): sin(z)=(eiz-e-iz)/2, cos(z)=(eiz+e-iz)/2, tan(z)=sin(z)/cos(z), csc(z)=1/sin(z), sec(z)=1/cos(z), cot(z)=1/tan(z). |
More:
sin(z),cos(z) are entire. trig functions are periodic with period 2π: trig(z+2πK)=trig(z), but tan(z),cot(z) have a period of π. Identity: cos2(z)+sin2(z) = 1.
|
sin(±1); sine |
± 0.841 470 984 807 896 506 652 502 ••• #t |
sin(0)=0, sin(π/2)=1, sin(π)=0, sin(3π/2)=-1. |
sin(±i) |
±i 1.175 201 193 643 801 456 882 381 ••• #t |
In general: sin(-z)=-sin(z), sin(z+π)=-sin(z), sin(iz) = i.sinh(z). |
csc(±1); cosecant |
± 1.188 395 105 778 121 216 261 599 ••• |
csc(π/2)=1, csc(3π/2)=-1. |
csc(±i) |
-(±i) 0.850 918 128 239 321 545 133 842 ••• |
In general: csc(-z)=-csc(z), csc(z+π)=-csc(z), csc(iz) = -i.csch(z). |
cos(±1); cosine |
0.540 302 305 868 139 717 400 936 ••• |
cos(0)=1, cos(π/2)=0, cos(π)=-1, cos(3π/2)=0. |
cos(±i) |
1.543 080 634 815 243 778 477 905 ••• #t |
In general: cos(-z)=cos(z), cos(z+π)=-cos(z), cos(iz)=cosh(z). |
tan(±1); tangent |
± 1.557 407 724 654 902 230 506 974 ••• |
tan(0)=0, tan(±π/2)=±∞, tan(π)=0, tan(3π/2)=-(±∞). |
tan(± i) |
± i 0.761 594 155 955 764 888 119 458 ••• |
In general: tan(-z)=-tan(z), tan(z+π)=tan(z), tan(iz)=i.tanh(z). |
Inverse trigonometric functions asin(z), acos(z), atan(z), acsc(z), asec(z), acot(z). In general: atrig(z) = Atrig(z,0). |
More:
Atrig(z,K) are multivalued right inverses of trig(z), integer K being the branch index. Atrig(z,K) = atrig(z)+πK for trig ≡ tan, cot; otherwise Atrig(z,K) = atrig(z)+2πK.
|
asin(±i) = ±i.log(1+sqrt(2)) |
± i 0.881 373 587 019 543 025 232 609 ••• #t |
asin(0) = 0, asin(±1) = ±π/2. |
acos(±i) = π/2 - asin(±i) |
In general, acos(z) = π/2 - asin(z) |
acos(0) = π/2, acos(1) = 0, acos(-1) = π. |
atan(±1) = ±π/4 |
± 0.785 398 163 397 448 309 615 660 ••• |
atan(0) = 0, atan(±i) = ±∞, atan(z) = -i.atanh(iz). |
Hyperbolic functions trigh(z): sinh(z)=(ez-e-z)/2, cosh(z)=(ez+e-z)/2, tanh(z)=sinh(z)/cosh(z), csch(z)=1/sinh(z), sech(z)=1/cosh(z), coth(z)=1/tanh(z). |
More:
sinh(z),cosh(z) are entire. trigh functions are periodic with period 2πi: trigh(z+2πiK)=trig(z), but tanh(z),coth(z) have a period of πi. Identity: cosh2(z)-sinh2(z) = 1.
|
sinh(±1) = (e - e-1)/2 |
±1.175 201 193 643 801 456 882 381 ••• #t |
sinh(0)=0 |
sinh(±i) = ±i.sin(1) |
±i 0.841 470 984 807 896 506 652 502 ••• #t |
In general: sinh(-z)=-sinh(z), sinh(iz)=i.sin(z) |
cosh(±1) = (e + e-1)/2 |
1.543 080 634 815 243 778 477 905 ••• #t |
cosh(0)=1 |
cosh(±i) = cos(1) |
0.540 302 305 868 139 717 400 936 ••• |
In general: cosh(-z)=cos(z), cosh(iz)=cos(z) |
tanh(±1) |
± 0.761 594 155 955 764 888 119 458 ••• |
tanh(0)=0. Lx→±∞{tanh(x)}=±1. |
tanh(± i) |
± i 1.557 407 724 654 902 230 506 974 ••• |
In general: tanh(-z)=-tanh(z), tanh(iz) = i.tan(z) |
Inverse hyperbolic functions asinh(z), acosh(z), atanh(z), acsch(z), asech(z), acoth(z). In general: atrigh(z) = Atrigh(z,0). |
More:
Atrigh(z,K) are multivalued right inverses of trigh(z), K being the branch index. Atrigh(z,K) = atrigh(z)+πiK for trigh ≡ tanh, coth; otherwise Atrigh(z,K) = atrigh(z)+2πiK.
|
asinh(±1) = ±log(1+sqrt(2)) |
±0.881 373 587 019 543 025 232 609 ••• |
asinh(0) = 0, asinh(± i) = ± i π/2. |
acosh(± i) = asinh(1) ± i π/2 |
acosh(0) = (π/2) i |
acosh(1) = 0, acosh(-1) = π. |
atanh(±i) = ± i.π/4 = ±log((1+i)/(1-i))/2 |
± i 0.785 398 163 397 448 309 615 660 ••• |
atanh(0) = 0, atanh(±1) = ±∞, atanh(z) = -i.atan(iz). |
Logarithmic integral li(z) = It=0,z{1/log(t)}, x ≥ 0; Li(x) = li(x)-li(2) = It=2,x{1/log(t)}; Lx→+∞(li(x)/(x/log(x))) = 1. For li(e), see Ei(1). |
li(2); for real x>0, Imag(li(x))=0 |
1.045 163 780 117 492 784 844 588 ••• |
More: li(0)=0, li(1)=-∞, li(+∞)=+∞, Re(li(-∞))=-∞ |
li(-1); upper sign applies just above the real axis |
0.073 667 912 046 425 485 990 100 ••• |
± i 3.422 733 378 777 362 789 592 375 ••• |
li(±i) |
0.472 000 651 439 568 650 777 606 ••• |
± i 2.941 558 494 949 385 099 300 999 ••• |
Unique positive real root of li(z), z = μ |
1.451 369 234 883 381 050 283 968 ••• |
Ramanujan-Soldner's constant (or just Soldner's) |
Derivative of li(z) at its root z = μ |
2.684 510 350 820 707 652 502 382 ••• |
Equals 1.0/log(μ) |
Unique negative real root of Real(li(z)) |
-2.466 408 262 412 678 075 197 103 ••• |
Real(li(z)) has three real roots: μ, 0, and this one |
Imaginary value of li(z) at the above point |
± i 3.874 501 049 312 873 622 370 969 ••• |
Upper/lower sign applies just above/below the real axis |
Solution of x*li(x) = 1 for real x |
1.715 597 325 769 518 883 130 074 ... |
|
Fixed points of li(z): solutions li(z) = z other than z0=0. |
z±1, main-branch attractors of li(z) |
1.878 881 747 908 123 091 969 486 ... |
±i 2.065 922 202 370 662 188 988 104 ... |
Fixed points of -li(z): solutions li(z) = -z. |
Solution of x+li(x) = 0 for real x>1 |
1.162 128 219 976 088 745 102 790 ... |
This is a repulsor of the li(z) mapping! |
Solution of x+real(li(x)) = 0 for real x<1, x≠0 |
0.647 382 347 652 898 263 175 288 ... |
For real x<1, y=0, li(x+iy) is regular in x but discontinuous in y |
Complex main-branch attractors of -li(z) |
1.584 995 337 729 709 022 596 984 ... |
±i 4.285 613 025 032 867 139 156 436 ... |
Exponential integral E1(z) = It=1,∞{exp(-zt)/t}; multivalued, has a cut along the negative real axis. E1((0+)+i(0±))=∞, E1((0-)+i.(0±))=∞ -(±).π, E1(∞)=0 |
E1(1) |
0.219 383 934 395 520 273 677 163 ••• |
Equals (Gompertz constant)/e |
E1(±i) |
-0.337 403 922 900 968 134 662 646 ••• |
-(±) i 0.624 713 256 427 713 604 289 968 ••• |
E1(-1+i.0±) |
-1.895 117 816 355 936 755 466 520 ••• |
-(±) π.i |
Unique real root r of real(E1(x)) |
-0.372 507 410 781 366 634 461 991 ••• |
imag(E1(r+i.(0±)) = -(±)π |
Exponential integral Ei(z) = -It=-z,∞{exp(-t)/t}; multivalued, has a cut along the negative real axis. Ei(0+)=-∞, Ei(0-)=-∞ -π.i, Ei(-∞)=0, Ei(+∞)=+∞, Ei(±∞.i)=±π |
Ei(1) = -real(E1(-1)) |
1.895 117 816 355 936 755 466 520 ••• |
Equals li(e) |
Ei(±i) |
0.337 403 922 900 968 134 662 646 ••• |
(±) i 2.516 879 397 162 079 634 172 675 ... |
Ei(-1+i.0±) |
-0.219 383 934 395 520 273 677 163 ••• |
±π.i |
Unique real root of Ei(x) |
0.372 507 410 781 366 634 461 991 ••• |
Equals log(μ); μ being the Ramanujan-Soldner's constant |
Sine integral Si(z) = It=0,z{sin(t)/t}; Si(-z)=-Si(z); Si(conj(z))=conj(Si(z)); Si(0)=0; For real x>0: maxima at x=(2k-1)π, minima at x=2kπ, k=1,2,3,... |
More:
This covers also the hyperbolic sine integral Shi(z) = Si(i*z). Si(z) and Shi(z) are both entire complex functions. |
Si(1) ≡ Shi(-i) |
0.946 083 070 367 183 014 941 353 ••• |
Sk≥0{(-1)k/((2k+1)!(2k+1))} = 1/(1!1)-1/(3!3)+1/(5!5)-1/(7!7)+ |
Si(i) ≡ Shi(1) |
i 1.057 250 875 375 728 514 571 842 ••• |
Sk≥0{1/((2k+1)!(2k+1))} = 1/(1!1)+1/(3!3)+1/(5!5)+... |
Si(π), absolute maximum for real z |
1.851 937 051 982 466 170 361 053 ••• |
The Gibbs constant, equal to Ix=0,pi;{sin(x)/x}. |
Si(2π), first local minimum for real z |
1.418 151 576 132 628 450 245 780 ••• |
With growing real x, Si(x) exhibits ripples converging to π/2. |
Solutions of Si(z) = π/2 for real z: |
1st: 1.926 447 660 317 370 582 022 944 ... |
2nd: 4.893 835 952 616 601 801 621 684 ..., etc. |
Cosine integral Ci(z) = γ+log(z)+It=0,z{(cos(t)-1)/t}; Ci(conj(z))=conj(Ci(z)); For real x>0: maxima at x=(2k-1/2)π, minima at x=(2k+1/2)π, k=1,2,3,...
|
More:
This covers also the related entire cosine integral function Cin(z) = It=0,z{(1-cos(t))/t}. Identity: Cin(z)+Ci(z) = γ+log(z).
|
Ci(1) = real(Ci(-1)) |
0.337 403 922 900 968 134 662 646 ••• |
γ+Sk>0{(-1)k/(2k)!(2k))} = γ-1/(2!2)+1/(4!4)-1/(6!6)+1/(8!8)+...
|
Ci(±i) |
0.837 866 940 980 208 240 894 678 ••• |
±i π/2 |
Ci(π/2), absolute maximum for real z |
0.472 000 651 439 568 650 777 606 ••• |
= real(li(i)), li being the logarithmic integral |
Ci(3π/2), first local minimum for real z |
-0.198 407 560 692 358 042 506 401 ... |
With growing real x, Ci(x) exhibits ripples converging to 0. |
Solutions of Ci(x) = 0 for real x: |
1st: 0.616 505 485 620 716 233 797 110 ... |
2nd: 3.384 180 422 551 186 426 397 851 ..., etc. |
Real solution of x+Ci(x) = 0 |
0.393 625 563 408 040 091 457 836 ... |
The unique real-valued fixed point of -Ci(z) |
Gamma Γ(z) = It=0,z{ t z-1 e-t }; Γ(z+1) = z.Γ(z); Γ(1) = Γ(2) = 1; for n>0, Γ(n) = n! |
Location of Γ(x) minimum for x ≥ 0 |
1.461 632 144 968 362 341 262 659 ••• |
Also the positive root of digamma function ψ(x) |
Value of Γ(x) minimum for x ≥ 0 |
0.885 603 194 410 888 700 278 815 ••• |
For x > 0, the Gamma function minimum is unique |
Ix=a,a+1(log(Γ(x)) + a - a.log(a) |
0.918 938 533 204 672 741 780 329 ••• |
= log(2π)/2, for any a≥0 (the Raabe formula) |
Location and value of Γ(x) maximum in (-1,-0) |
x= -0.504 083 008 264 455 409 258 269 ••• |
Γ(x)= -3.544 643 611 155 005 089 121 963 ••• |
Location and value of Γ(x) minimum in (-2,-1) |
x= -1.573 498 473 162 390 458 778 286 ••• |
Γ(x)= +2.302 407 258 339 680 135 823 582 ••• |
Γ(1/2) |
1.772 453 850 905 516 027 298 167 ••• |
√π, this crops up very often |
Γ(1/3) |
2.678 938 534 707 747 633 655 692 ••• #t |
Γ(2/3) = 1.354 117 939 426 400 416 945 288 ••• |
Γ(1/4) |
3.625 609 908 221 908 311 930 685 ••• #t |
Γ(3/4) = 1.225 416 702 465 177 645 129 098 ••• |
Ix=0,∞{1/Γ(x)} |
2.807 770 242 028 519 365 221 501 ••• |
Fransén-Robinson constant |
Γ( i) (real and imaginary parts) |
-0.154 949 828 301 810 685 124 955 ••• |
- i 0.498 015 668 118 356 042 713 691 ••• |
1/Γ(± i) (real and imaginary parts) |
-0.569 607 641 036 681 806 028 615 ... |
± i 1.830 744 396 590 524 694 236 582 ... |
Polygamma functions ψn(z) are (n+1)st logarithmic derivatives of Γ(z), or n-th derivatives of ψ(z) ≡ ψ0(z).
|
More:
Recurrence: ψn(z+1) = ψn(z)+(-1)nn! / zn+1.
Reflection: ψn(1-z)+(-1)n+1ψn(z) = π (d/dz)ncot(πz).
For integer k≤0, Lx→k±{ψn(x)} = (-(±1))n+1∞.
|
Digamma ψ(z) = d log(Γ(z)) / dz. ψ(z+1) = ψ(z) + 1/z. ψ(1-z) = ψ(z) + π.cot(πz). ψ(2z) = (ψ(z)+ψ(z+1/2))/2 + log(2). For positive real root, see above.
See also.
|
ψ(1) = -γ |
- 0.577 215 664 901 532 860 606 512 ••• |
ψ(2) = 1-γ = +0.422 784 335 098 467 139 393 488 ••• |
ψ(± i) |
0.094 650 320 622 476 977 271 878 ••• |
± i 2.076 674 047 468 581 174 134 050 ••• |
ψ(1/2) = -γ -2.log(2) |
- 1.963 510 026 021 423 479 440 976 ••• |
ψ(-1/2) = 2+psi(1/2) = 0.036 489 973 978 576 520 559 024 ••• |
Trigamma ψ1(z) = d ψ(z) / dz.
ψ1(z+1) = ψ1(z) - 1/z2.
See also.
|
ψ1(1) |
1.644 934 066 848 226 436 472 415 ••• #t |
= ζ(2) = π2/6, ζ being the Riemann zeta function.
|
ψ1(± i) |
-0.536 999 903 377 236 213 701 673 ... |
-± i 0.794 233 542 759 318 865 583 013 ... |
ψ1(1/2) = π2/2 |
4.934 802 200 544 679 309 417 245 ••• |
ψ1(-1/2) = 4+ψ1(1/2) = 4+π2/2 |
Bessel functions (BF)
Bν(z) ≡ y(z) are solutions of the differential equation z2.y''+z.y'+(z2±ν2).y = 0 (lower sign is for modified Bessel functions)
|
BF of the first kind (regular at z=0): Jν(z) = (1/π) It=0,π{cos(νt-z.sin(t))}, and the modified BF of the first kind: Iν(z) = (1/π) It=0,π{exp(z.cos(t)).cos(νt)} = i-ν Jν(iz) |
General properties: For integer k, Jk(-z) = (-1)k Jk(z) and Ik(-z) = (-1)k Ik(z). For k=0, J0(0) = I0(0) = 1, otherwise Jk(0) = Ik(0) = 0. |
J0(±1) = I0(± i) |
0.765 197 686 557 966 551 449 717 ... |
In general, I0(z) = J0(-i.z) |
J0(± i) = I0(±1) |
1.266 065 877 752 008 335 598 244 ••• |
For real r, J0(r) and J0(r.i) are real |
J0(±2) = I0(±2i) |
0.223 890 779 141 235 668 051 827 ••• |
= Sk≥0{(-1)k/k!2} |
J0(±2i) = I0(±2) |
2.279 585 302 336 067 267 437 204 ••• |
= Sk≥0{1/k!2} |
1st root of J0(x) |
±2.404 825 557 695 772 768 621 631 ••• |
2nd: ±5.520 078 110 286 310 649 596 604 ... |
3rd root of J0(x) |
±8.653 727 912 911 012 216 954 198 ... |
4th: ±11.791 534 439 014 281 613 743 044 ... |
J1(±1) = -i.I1(± i) |
±0.440 050 585 744 933 515 959 682 ... |
In general, I1(z) = -i.J1(± i z) |
J1(± i) = -i.I1(-(±)1) |
At real x, J1(± ix) is imaginary, I1(± ix) is real |
± i 0.565 159 103 992 485 027 207 696 ••• |
1st root of J1(x), other than x = 0.0 |
±3.831 705 970 207 512 315 614 435 ••• |
2nd: ±7.015 586 669 815 618 753 537 049 ... |
3rd root of J1(x) |
± 10.173 468 135 062 722 077 185 711 ... |
4th: ± 13.323 691 936 314 223 032 393 684 ... |
Imaginary order: |
J±i(±1) = exp(±π/2).I±i(i) |
1.641 024 179 495 082 261 264 869 ... |
-(±) i 0.437 075 010 213 683 064 502 605 ... |
J±i(± i) = exp(±π/2).I±i(-(±) 1) |
0.395 137 431 337 007 718 800 172 ... |
-(±) i 0.221 175 556 871 848 055 937 508 ... |
J±i(-(±) i) = exp(±π/2).I±i(± 1) |
9.143 753 846 275 618 780 610 618 ... |
-(±) i 5.118 155 579 455 226 532 551 733 ... |
BF of the second kind: Yν(z) = (Jν(z)cos(νπ)-J-ν(z))/sin(νπ), and the modified BF of the second kind Kν(z) = (π/2)(I-ν-Iν)/sin(νπ); for integer ν, apply limit (continuity in ν) |
Notes: These are all singular (divergent) at z=0. The Y-functions are sometimes denoted as Bessel N-functions. |
Y0(+1) |
0.088 256 964 215 676 957 982 926 ... |
For positive real arguments, Yn(z) is real |
Y0(-1); its real part equals Y0(+1) |
0.088 256 964 215 676 957 982 926 ... |
+i 1.530 395 373 115 933 102 899 435 ... |
Y0(± i); its imaginary part equals J0(± i) |
-0.268 032 482 033 988 548 762 769 ... |
± i 1.266 065 877 752 008 335 598 244 ••• |
1st root of Y0(x) |
±0.893 576 966 279 167 521 584 887 ... |
2nd: ±3.957 678 419 314 857 868 375 677 ... |
3rd root of Y0(x) |
±7.086 051 060 301 772 697 623 624 ... |
4th: ±10.222 345 043 496 417 018 992 042 ... |
K0(+1) |
0.421 024 438 240 708 333 335 627 ... |
For positive real arguments, Kn(z) is real |
K0(-1); its real part equals K0(+1) |
0.421 024 438 240 708 333 335 627 ... |
-i 3.977 463 260 506 422 637 256 609 ... |
K0(± i) |
-0.138 633 715 204 053 999 681 099 ... |
-(±) i 1.201 969 715 317 206 499 136 662 ... |
Y1(+1) |
-0.781 212 821 300 288 716 547 150 ... |
For positive real arguments, Yn(z) is real |
Y1(-1); its real part equals -Y1(+1) |
0.781 212 821 300 288 716 547 150 ... |
-i 0.880 101 171 489 867 031 919 364 ... |
Y1(± i); its real part equals imag(J1(-i)) |
-0.565 159 103 992 485 027 207 696 ••• |
± i 0.383 186 043 874 564 858 082 704 ... |
1st root of Y1(x) |
±2.197 141 326 031 017 035 149 033 ... |
2nd: ±5.429 681 040 794 135 132 772 005 ... |
3rd root of Y1(x) |
± 8.596 005 868 331 168 926 429 606 ... |
4th: ± 11.749 154 830 839 881 243 399 421 ... |
Hankel functions, alias Bessel functions of the third kind
|
HF of the first kind H1ν(z) = Jν(z)+i.Yν(z) = (J-ν(z) -e-iνπJν(z))/(i.sin(νπ)), and HF of the second kind H2ν(z) = Jν(z)-i.Yν(z) = (J-ν(z) -eiνπJν(z))/(-i.sin(νπ))
|
H10(±1) |
±0.765 197 686 557 966 551 449 717 ... |
+i 0.088 256 964 215 676 957 982 926 ... |
H10(+i) |
0.0 |
-i 0.268 032 482 033 988 548 762 769 ... |
H10(-i) |
2.532 131 755 504 016 671 196 489 ... |
-i 0.268 032 482 033 988 548 762 769 ... |
H20(+1) |
0.765 197 686 557 966 551 449 717 ... |
-i 0.088 256 964 215 676 957 982 926 ... |
H20(-1) |
2.295 593 059 673 899 654 349 152 ... |
-i 0.088 256 964 215 676 957 982 926 ... |
H20(i) |
2.532 131 755 504 016 671 196 489 ... |
-i 0.268 032 482 033 988 548 762 769 ... |
H20(-i) |
0.0 |
-i 0.268 032 482 033 988 548 762 769 ... |
Spherical Bessel functions
bν(z) ≡ y are solutions of the differential equation z2.y''+2z.y'+[z2-ν(ν+1)].y = 0.
|
Spherical BF of the first kind (regular at z=0): jν(z) = sqrt(π/(2z)) Jν+1/2(z), where J is the Bessel J-function. jν(-z) = (-1)ν jν(z). Using Kroneker δ, jν(0) = δν,0.
|
j0(±1) = sin(1) = sinh(i)/i |
0.841 470 984 807 896 506 652 502 ••• #t |
j0(z) = sinc(z) = sin(z)/z is an entire functtion. Note: j0(0) = 1.
|
j0(± i) = sinh(1) = sin(i)/ i |
1.175 201 193 643 801 456 882 381 ••• #t |
j0(z) = Sk≥0{(-1)kz2k/(2k+1)!}.
|
j1(±1) = ±(sin(1)-cos(1)) |
± 0.301 168 678 939 756 789 251 565 ••• |
j1(z) = (sin(z)-z*cos(z))/z2 is an entire functtion. Note: j1(0) = 0.
|
j1(± i) |
± i 0.367 879 441 171 442 321 595 523 ••• #t |
j1(± i) = ± i / e.
|
Spherical BF of the second kind: yν(z) = sqrt(π/(2z)) Yν+1/2(z), where Y is the Bessel Y-function. Often denoted also as nν(z). Lx→0± = -(±)∞.
|
y0(±1) = -(±)cos(1) = -(±)cosh(i) |
-(±) 0.540 302 305 868 139 717 400 936 ••• |
y0(z) = -cos(z)/z.
|
y0(± i) = ± i.cos(i) = ± i.cosh(1) |
± i 1.543 080 634 815 243 778 477 905 ••• #t |
y0(z) = -(1/z)Sk≥0{(-1)kz2k/(2k)!}.
|
y1(±1) = -(sin(1)+cos(1)) |
-1.381 773 290 676 036 224 053 438 ... |
y1(z) = -(z*sin(z)+cos(z))/z2. Note: y1(0) = -∞.
|
y1(± i) |
0.367 879 441 171 442 321 595 523 ••• #t |
= 1/ e = j1(i) / i.
|
Dawson integral F(x) = e-x^2 It=0,x{et^2} |
Maximum: Location xmax |
0.924 138 873 004 591 767 012 823 ••• |
F(x) being an odd function; there is a minimum at -xmax
|
Maximum: Value at xmax |
0.541 044 224 635 181 698 472 759 ••• |
F(xmax) = 1/(2xmax). The value of -F''(xmax) is twice this one.
|
Inflection: Location xi |
1.501 975 268 268 611 498 860 348 ••• |
Dawson integral: see above.
|
Inflection: Value at xi |
0.427 686 616 017 928 797 406 755 ••• |
F(xi) = xi/(2xi2-1). |
F(x) inflection: Derivative at xi |
-0.284 749 439 656 846 482 522 031 ••• |
F(xi) = xi/(2xi2-1). |
Lambert W-function WK(z): multi-valued left inverse of the mapping z*exp(z). W0(x) is real for x ∈ [-1/e,+∞). W-1(x) is real for x ∈ [-1/e,0). |
W0(1) ≡ omega constant |
0.567 143 290 409 783 872 999 968 ••• |
W0(-1/e) = -1, W0(0) = 0, Lx→∞{W0(x)} = ∞ |
W0(±i) |
0.374 699 020 737 117 493 605 978 ... |
±i 0.576 412 723 031 435 283 148 289 ... |
W0(-1) = conjugate of W-1(-1) |
-0.318 131 505 204 764 135 312 654 ••• |
±i 1.337 235 701 430 689 408 901 162 ••• |
Inflection location xi of W-1(x) for real x |
-0.270 670 566 473 225 383 787 998 ... |
= -2/e2 so that W-1(xi) = -2. W-1(-1/e) = -1, Lx→0-{W-1(x)} = -∞ |
W-1(+i) = conjugate of W1(-i) |
-1.089 648 913 877 781 029 302 988 ... |
-i -2.766 362 603 273 869 178 517 538 ... |
W-1(-i) = conjugate of W1(i) |
-1.834 271 700 407 880 400 923 088 ... |
-i -5.985 834 988 966 545 709 364 109 ... |
Function f(z) = z z = exp(z*log(z)). This is an entire function. f(0)=f(1)=1, f(-1)=-1. |
f(i) = f(-i) = i i |
0.207 879 576 350 761 908 546 955 ••• #t |
= e-π/2 (real value!) |
Location of minimum (on real axis) |
0.367 879 441 171 442 321 595 523 ••• |
xmin = 1/e. The minimum is unique. |
Location of minimum (on real axis) |
0.367 879 441 171 442 321 595 523 ••• |
xmin = 1/e. The minimum is unique. |
Value at minimum |
0.692 200 627 555 346 353 865 421 ••• |
e-1/e. |
Mathematical constants useful in Sciences |
Planck's radiation law on frequency scale: Prl(x) = x3/(ex - 1), or wavelength scale: Prl(λ) = λ-5(e1/λ - 1)-1 |
Integral Ix=0,∞{x3/(ex - 1)} |
6.493 939 402 266 829 149 096 022 ••• |
π4/15. |
Related: the roots of x = K*(1 - e-x) |
K=5: 4.965 114 231 744 276 303 698 759 ••• |
K=4: 3.920 690 394 872 886 343 560 891 ••• |
See Calculation of blackbody radiation, App.C |
K=3: 2.821 439 372 122 078 893 403 191 ••• |
K=2: 1.593 624 260 040 040 092 323 041 ••• |
Function sinc(z) = sin(z)/z and its Hilbert transform hsinc(z), both appearing in spectral theory (transient data truncation artifacts). |
sinc(z) = sin(z)/z = j0(z) (the spherical Bessel function). sinc(-z) = sinc(z), sinc(0) = 1, sinc(±i) = cosh(1), sinc(±1) = imag(exp(i)). |
Half-height argument |
1.895 494 267 033 980 947 144 035 ••• |
Solution of sinc(x) = 1/2 |
First minimum location |
4.493 409 457 909 064 175 307 880 ••• |
First positive solution of tan(x) = x |
First minimum value |
-0.217 233 628 211 221 657 408 279 ••• |
|
hsinc(z) = (1-cos(z))/z, appearing in spectral theory (transient data truncation artifacts). hsinc(-z) = -hsinc(z). |
First maximum location |
2.331 122 370 414 422 613 667 835 ••• |
Also first positive solution of x.sin(x) = 1-cos(x) |
First maximum value |
0.724 611 353 776 708 475 738 990 ••• |
|
Functions sinc(n,x), for integer n ≥ 0, the radial profile of nD Fourier transform of an n-dimensional unit sphere |
First roots ξn and definitions of sinc(n,x) in terms of Bessel functions |
ξ0 |
2.404 825 557 695 772 768 621 631 ••• #t |
sinc(0,x) = J0(x), the Bessel function |
ξ1 = π |
3.141 592 653 589 793 238 462 643 ••• #t |
sinc(1,x) = sin(x)/x = sinc(x) = j0(x), 1st kind spherical Bessel |
ξ2 |
3.831 705 970 207 512 315 614 435 ••• |
sinc(2,x) = 2J1(x)/x |
ξ3 , also location of 1st negative lobe of sinc(1,x) |
4.493 409 457 909 064 175 307 880 ••• |
sinc(3,x) = 3[sin(x)/x - cos(x)]/x2 = 3j1(x)/x |
ξ4 |
5.135 622 301 840 682 556 301 401 ••• |
sinc(4,x) = 8J2(x)/x3 |
Ideal gas statistics with n randomly distributed particles per unit volume |
1st Chandrasekhar constant c = Γ(4/3)/(4π/3)1/3 |
0.553 960 278 365 090 204 701 121 ••• |
Mean distance to nearest neighbor = c/n1/3 |
2nd Chandrasekhar constant C = (2π)-1/3 |
0.541 926 070 139 289 008 744 561 ••• |
Most probable distance to nearest neighbor = C/n1/3 |
Spectral peaks (lines) of height H and half-height width W: |
Area of a Lorentzian peak / HW |
1.570 796 326 794 896 619 231 321 ••• |
π / 2 |
Area of a Gaussian peak / HW |
1.064 467 019 431 226 179 315 267 ••• |
sqrt(π /(4ln2)) |
Area of a Sinc peak / HW |
0.828 700 120 129 003 061 896 869 ••• |
π/(2η), η being defined by sinc(η) = 1/2 (see sinc function) |
Bloembergen-Purcell-Pound function bpp(x) = x/(1+x2) + 4x/(1+4x2), ubiquitous in the theory of 2nd rank relaxation processes |
bpp(x) maximum: Location xmax |
0.615 795 146 961 756 244 755 982 ... |
bpp(x) being an odd function; there is a minimum at -xmax |
bpp(x) maximum: Value at xmax |
1.425 175 719 086 501 535 329 674 ... |
For first term only: bpp1,max(y) = 0.5, for y = 1 |
Exponential settling (relaxation) to an equilibrium of a physical system with a characteristic settling time T |
Settling time to 10%, in units of T |
2.302 585 092 994 045 684 017 991 ••• |
log(10). Settling level equals initial_deviation/final_deviation |
... to 1% (10-2) |
4.605 170 185 988 091 368 035 982 ••• |
log(100) |
... to 0.1% (10-3) |
6.907 755 278 982 137 052 053 974 ... |
log(1000) |
... to 100 ppm (10-4, 1000 ppm) |
9.210 340 371 976 182 736 071 965 ... |
log(10^4) |
... to 10 ppm (10-5) |
11.512 925 464 970 228 420 089 957 ... |
log(10^5) |
... to 1 ppm (10-6) |
13.815 510 557 964 274 104 107 948 ... |
log(10^6) |
... to 1 ppb (10-9) |
20.723 265 836 946 411 156 161 923 ... |
log(10^9) |
Settling level after 1 T |
0.367 879 441 171 442 321 595 523 ••• |
After time t = n*T exp(-1), the settling level equals exp(-n). |
... 2 T |
0.135 335 283 236 612 691 893 999 ••• |
3 T: 0.049 787 068 367 863 942 979 342 ••• |
... 4 T |
0.018 315 638 888 734 180 293 718 ••• |
5 T: 0.006 737 946 999 085 467 096 636 ••• |
... 6 T |
0.002 478 752 176 666 358 423 045 ••• |
7 T: 0.000 911 881 965 554 516 208 003 ... |
Statistics and probability constants |
Normal probability distribution with mean μ and variance σ. Density N(x,σ,μ) = exp(-((x-μ)/σ)^2 /2) / (σ√(2π)): |
Density maximum * σ |
0.398 942 280 401 432 677 939 946 ••• |
1/√(2π), attained at x = 0 |
E[x2n] /σ2n, for μ=0, n = 0,1,2,... |
1, 1, 3, 15, 105, 945, 10395, 135135, ••• |
= (2*n-1)!!. Note: E[xn] is zero for odd n. |
E[|x|2n-1] * √(2*π) /σ2*n-1, for μ=0, n = 1,2,3,... |
2, 4, 16, 96, 768, 7680, 92160, 1290240, ••• |
= (n-1)!*2n. Note: E[|x|2n] values match the entry above. |
Entropy - log(σ) |
1.418 938 533 204 672 741 780 329 ••• |
= (1+log(2π))/2, independent of μ. |
Percentiles: x/σ for which It=-∞,x{N(t,σ)} = P, It=-x,x{N(t,σ)} = 2P-1 |
75% |
0.674 489 750 196 081 743 202 227 ••• |
Probable error: x/σ for which It=-x,x{N(t,σ)} = 0.5 |
80% |
0.841 621 233 572 914 205 178 706 ... |
85% ... 1.036 433 389 493 789 579 713 244 ... |
90% |
1.281 551 565 544 600 466 965 103 ... |
95% ... 1.644 853 626 951 472 714 863 848 ... |
98% |
2.053 748 910 631 823 052 937 351 ... |
99% ... 2.326 347 874 040 841 100 885 606 ... |
99.9% |
3.090 232 306 167 813 541 540 399 ... |
99.99% ... 3.719 016 485 455 680 564 393 660 ... |
99.999% |
4.264 890 793 922 824 628 498 524 ... |
99.9999% ... 4.753 424 308 822 898 948 193 988 ... |
Probability that a random value superates n standard deviations, pn = 0.5*erfc(n/√2). Equals P{x/σ > n} or P{x/σ < -n}, which is half of P{|x/σ| > n}: |
n = 1 |
0.158 655 253 931 457 051 414 767 ••• |
n = 2 ... 0.022 750 131 948 179 207 200 282 ••• |
n = 3 |
0.001 349 898 031 630 094 526 651 ••• |
n = 4 ... 0.000 031 671 241 833 119 921 253 ••• |
n = 5 |
0.000 000 286 651 571 879 193 911 ••• |
n = 6 ... 0.000 000 000 986 587 645 037 698 ••• |
Engineering constants; click here for conventional physical constants instead |
Amplitude / Effective_Amplitude |
1.414 213 562 373 095 048 801 688 ••• |
√2, holds only for harmonic functions |
Power factor of 2 (or 0.5) in dB |
±3.010 299 956 639 811 952 137 388 ••• |
±10.Log(2); corresponding amplitudes ratio is √2 : 1 |
Amplitude factor of 2 (or 0.5) in dB |
±6.020 599 913 279 623 904 274 777 ••• |
±20.Log(2) |
±1 dB ratios: |
Power |
1.258 925 411 794 167 210 423 954 ••• |
10+1/10 |
Inverse power |
0.794 328 234 724 281 502 065 918 ... |
10-1/10 |
Amplitude |
1.122 018 454 301 963 435 591 038 ••• |
10+1/20 |
Inverse amplitude |
0.891 250 938 133 745 529 953 108 ... |
10-1/20 |
±3 dB ratios: |
Power |
1.995 262 314 968 879 601 352 455 ... |
10+3/10 +3 dB in power or +6 dB in amplitude |
Inverse power |
0.501 187 233 627 272 285 001 554 ... |
10 -3/10 -3 dB in power or -6 dB in amplitude |
Amplitude |
1.412 537 544 622 754 302 155 607 ... |
10+3/20 |
Inverse amplitude |
0.707 945 784 384 137 910 802 214 ... |
10-3/20 |
Music and acoustics: |
Half-note frequency ratio |
1.059 463 094 359 295 264 561 825 ••• |
21/12 |
Perfect fifth ratio |
3/2, exact |
also 2/3 |
Pythagorean comma |
1.013 643 264 770 507 8125 |
(3/2)12/27, frequency ratio of 12 perfect fifth to 7 octaves |
Rumors constant |
0.203 187 869 979 979 953 838 479 ••• |
Solution of x.e2 = e2x. Appears in the statistical theory of noise. |
Software and computer engineering constants |
Decadic-to-binary precision/capacity factor |
3.321 928 094 887 362 347 870 319 ••• |
log2(10); Example: 7 decadic digits require 23+ binary bits |
Binary-to-decadic precision/capacity factor |
0.301 029 995 663 981 195 213 738 ••• |
Log(2); Example: 31 binary bits require 9+ decimal digits |
Unsigned integer data types maximum values (for signed integers see the 3rd column) |
byte (8 bits) 2^8-1 |
255 |
signed max = 2^7-1 = +127 |
word (16 bits) 2^16-1 |
65'535 |
signed max = 2^15-1 = +32'767 |
dword (double word, 32 bits) 2^32-1 |
4'294'967'295 |
signed max = 2^31-1 = +2'147'483'647 |
qword (quad word, 64 bits) 2^64-1 |
18'446'744'073'709'551'615 |
signed max = 2^63-1 = +9'223'372'036'854'775'807 |
Bit configurations which can't be used as signed integers since, though formally negative, aritmetic negation returns the same value (weird numbers) |
8 bits |
hex 0x80 |
signed -2^7 = -128 |
16 bits |
hex 0x8000 |
signed -2^15 = -32'768 |
32 bits |
hex 0x80000000 |
signed -2^31 = -2'147'483'648 |
64 bits |
hex 0x8000000000000000 |
signed -2^63 = -9'223'372'036'854'775'808 |
Floating point data types. The epsilon value is the precision limit, such that, for x < ε, 1+ε returns 1 |
float (1+8+23 bits): Maximum value |
3.402823669209384634633746...e+38 |
2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa |
float (1+8+23 bits): minimum value |
1.401298464324817070923729...e-45 |
2*2^(-2^(8-1))*2^(-(23-1)) |
float (1+8+23 bits): epsilon value |
1.1920928955078125 e-7 |
2^(-23) |
double (1+11+52 bits): Maximum value |
1.79769313486231590772930...e+308 |
2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa |
double (1+11+52 bits): minimum value |
4.94065645841246544176568...e-324 |
2*2^(-2^(11-1))*2^(-(52-1)) |
double (1+11+52 bits): epsilon value |
2.220446049250313080847263...e-16 |
2^(-52) |
long double (1+15+64 bits): Maximum value |
1.189731495357231765085759...e+4932 |
2^(2^(15-1)); internal 10-byte format of Intel "coprocessor" |
long double (1+15+64 bits): minimum value |
1.822599765941237301264202...e-4951 |
2*2^(-2^(15-1))*2^(-(64-1)) |
long double (1+15+64 bits): epsilon value |
5.421010086242752217003726...e-20 |
2^(-64) |
Conversion constants. |
Conversions between logarithms in bases e (natural), 10 (decadic), and 2 (binary). |
log(2), Natural logarithm of 2 |
0.693 147 180 559 945 309 417 232 ••• #t |
Solution of ex = 2 |
Log(2), Decadic logarithm of 2 |
0.301 029 995 663 981 195 213 738 ••• |
Solution of 10x = 2 |
log(10), Natural logarithm of 10 |
2.302 585 092 994 045 684 017 991 ••• |
Solution of ex = 10 |
log2(10), Binary logarithm of 10 |
3.321 928 094 887 362 347 870 319 ••• |
Solution of 2x = 10 |
Log(e), Decadic logarithm of e |
0.434 294 481 903 251 827 651 128 ••• |
Solution of 10x = e |
log2(e), Binary logarithm of e |
1.442 695 040 888 963 407 359 924 ••• |
Solution of 2x = e |
Plane angles. Radians (rad) and degrees (deg) are plane angles |
1 rad in degs |
57.295 779 513 082 320 876 798 15 ••• |
180/π = 57° 17' 44.806247096355156473357330...'' |
1 deg in rads |
0.017 453 292 519 943 295 769 237 ••• |
π/180 |
1 rad in arcmin |
3437,746 770 784 939 252 607 889 ... |
60*(180/π) |
1 arcmin in rads |
2.908 882 086 657 215 961 539... e-4 |
(π/180)/60 |
1 rad in arcsec |
206264,806 247 096 355 156 473 357 ••• |
60*60*(180/π) |
1 arcsec in rads |
4.848 136 811 095 359 935 899 ••• e-6 |
(π/180)/60/60 |
Solid angles. Steradians (sr), square radians (rad2), and square degrees (deg2) are areas on a unit sphere. |
Full solid angle of 4π steradians in deg2 |
41252.961 249 419 271 031 294 671 ••• |
4π/(π/180)2 = 3602/π |
1 sr in deg2 |
3282.806 350 011 743 794 781 694 ••• |
(180/π)2; exact for infinitesimal areas |
1 deg2 in sr |
0.000 304 617 419 786 708 599 346 ••• |
(π/180)2; exact for infinitesimal areas; inverse of the above |
1 sr in rad2 |
1.041 191 803 606 873 340 234 607 ••• |
2*asin(√(sin(1/4))) |