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Abstract

The limits of isotropic spatial resolution in NMR imaging are estithatarting from an explicit formula for S/N
ratio. It is shown that the limit is essentially imposed bydtesitivity of the NMR experiment. The required
acquisition time is of course also a factor, but since it ineseasth the 7th power of resolution, changing
acquisition time from quite short to excessively long will causly a relatively modest increase of the latter.
For 1H NMR microscopy (samples of the order of 1cm in diametexetis an "impossible" barrier of about 40
microns even at high fields (e.g., 300 MHz) for samples rich in hedro®n the other hand, there is no
particularly sharp degradation of resolution when going to loweddfi¢é.g., 10 MHz), or hydrogen-poor
samples, or some of the heteronuclei (e.g., 23Na). Consequently, NMBsecoijgy applications requiring
isotropic voxel sizes of 100-500 microns have good chances of success agvsurprisingly low
fields/concentrations.
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THE LIMITS OF NMR IMAGING

STANISLAV SYKORA

Stelar Snc, Via E. Fermi 4, 27035 Mede, laly

The limits of isotropic spatial resolution in NMR imaging are estimated starting from an explicit formula for
S/N ratios. It is shown that the limit is essentially imposed by the sensitivity of the NMR experiment. The re-
quired acquisition time is of course also a factor, but since it increases with the 7th power of resolution, chang-
ing acquisition time from quite short to excessively long will cause only a relatively modest increase of the
latter. For '"H NMR microscopy (samples of the order of 1 cm in diameter), there is an ‘‘impassable’’ barrier
of about 40 microns even at high-fields (e.g., 300 MHz) for samples very rich in hydrogen. On the other hand,
there is no particularly sharp degradation of resolution when going to lower fields (e.g., 10 MHz), or hydro-
gen-poor samples, or some of the heteronuclei (e.g., **Na). Consequently, NMR microscopy applications re-
quiring isotropic voxel sizes of 100-500 microns have good chances of success even at surprisingly low fields/

concentrations.

Keywords: Imaging; Microscopy; Sensitivity; Resolution.

INTRODUCTION

Spatial resolution in MRI is an important parameter for
both in vive imaging and in vitro NMR microscopy.
Since imaging is currently done with different nuclei
and at different field strengths, we need a generic pro-
cedure for estimating its limits. The principal barrier in
NMR imaging is the signal to noise ratio S/N achiev-
able within a reasonable time; virtually all other limita-
tions are linked to the S/N. The problem therefore splits
in two simpler tasks: Given basic technical parameters
of a system, (a) calculate its S/N ratio, and (b) estimate
the limit of interest (e.g., the spatial resolution achiev-
able in a given time).

NMR SENSITIVITY

Many studies have been dedicated to the estimation
of the S/N ratio.'™"! The resulting formulae differ some-
what according to the adopted point of view. In partic-
ular, quantities like the coil quality factor Q, the
matching impedance R, the equivalent coil and sample
loss resistances, the coil geometric factors and the coil
inductance form a set of interdependent parameters
which can appear in many equivalent combinations. The
formula used in this study for the S/N ratio at the be-
ginning of an FID is (the derivation will be presented
elsewhere):
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The input quantities in Eq. (1) are:

Nuuct number of nuclei inside the sample coil,
: nuclear spin of the observed nuclei,
: gyromagnetic ratio of the observed nuclei,
: magnetic field strength,
: magnetic susceptibility of the vacuum,
: resonance frequency (equal to gB,),
: sample temperature,

(N

(1a)

(1b)
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Table 1. Field and spectral width dependence of the
achievable resolution

Fo MHz 1
Q 300
n 10
M, .95
S.=1Hz

Very easy: 535
Easy: 380
Difficult: 280
Crazy: 200
S. = 100 Hz

Very easy: 1035
Easy: 745
Difficult: 535
Crazy: 385

10 100 300
150 100 50
5 2 1
.9 S 3
196 91 717
142 66 56
103 47 40
74 34 29
380 175 150
275 127 107
196 91 7
142 66 56

Water protons, coil diameter 1.2 cm, sample diameter 1 cm. For other

parameters, se¢ text.

coil quality factor (loaded),

coil matching factor,

coil diameter,

coil shape-efficiency factor,

coil assembly matching impedance,

coil enclosure temperature,

receiver bandwidth,

equivalent input noise of the preamp for 1 Hz
bandwidth.
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The intermediate, derived quantities are:

M, . nuclear equilibrium magnetization,

< ¢ > : rms of the induced electromotive force;

< $? > : rms of the signal signal at the preampli-
fier input,

< n,> >: rms of the equivalent input noise of the
preamplifier,

< n2>: rms of the thermal noise at the preampli-

fier input,

rms of the total noise perceived by the

preamplifier.

While some of the input quantities are known with
the utmost precision, several of them require further ex-
planation. In particular, this regards Q, M., and .

The quality factor Q of the coil is defined as the ra-
tio between its impedance wL (L being its inductance)
and its equivalent loss resistance r, both intended for a
loaded coil at the operating frequency. The inductance
of a coil depends only upon its geometry and can be de-
termined quite easily. The loss resistance, on the other
hand, is much more difficult to estimate. It is a sum of
two parts: the loss resistance ri_ of the unloaded coil and
the resistance r, due to the losses within the sample. ry

depends upon the coil material, wire diameter, winding
geometry, insulation material and operating frequency;
phenomena such as skin effect are involved in its cal-
culation, The sample losses r, depend upon the sample
volume and its absorption efficiency at the resonance
frequency (dielectric and conductive losses). In general,
r, increases quite sharply with frequency.

Making an a priori estimate of Q is, therefore, a very
difficult task. What we can do, however, is to list a few
empirical rules. First of all, a well-constructed coil ex-
hibits a substantially lower Q when loaded than empty.
This indicates that sample losses r, are dominant and ry_
plays a minor role. In order to maximize Q, one should
increase the inductance L as much as possible (e.g., by
increasing the number of coil turns). However, this de-
creases rapidly the self-resonant frequency of the coil
(given by its inductance and parasitive capacity) until
the limit is reached where the latter becomes equal to
the operating frequency. As a result, for any basic coil
design, the maximum inductance achievable in practice
decreases with frequency. This, combined with the rapid
increase of r, with frequency, leads to the empirical fact
that Q factors of loaded optimized coils tend to decrease
with frequency. Typical values expected for optimized
devices are listed in Table 1.

The coil matching factor M is defined as M; = (R/
wL)/Q, where R is the matching impedance (usually 50
Ohm). Whenever a resonant LC circuit is matched to
behave as an ohmic load of a given value, a compro-
mise is made which involves a deviation from its free-
running resonance frequency and the insertion of a suit-
able passive component. The resulting degradation in
performance is expressed by M;. The expected values
of M; tend to decrease from the maximum of 1 at low
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frequencies to a fraction of 1 at high frequencies (see
Table 1).

It should be noted that Q and M; appear in Eq. (la),
only in the product QZMr which can also be expressed
as R/r. If r is dominated by sample losses, this ratio is
practically independent of the coil parameters. Quite dif-
ferent coils will therefore give comparable results when
used in a matched circuit at the same operating fre-
quency. The inherent variations in loaded Q are to a
large extent offset by variations in M. The reason why
we keep 0 and M, separate is that one can operate in
the unmatched condition. This complicates the coupling
between the coil and the preamplifier (fixed cable
lengths, nonstandard specifications) but ensures effec-
tively M; = 1.

The shape-efficiency factor m is related to the geom-
etry of the coil after scaling it to a unit diameter. The
exact definition involves the magnetic flux & through
the coil surface, due to a unit magnetic dipole located
at the coil center. In our formula, m is defined as ®/d,,
where @, is the same quantity for a perfectly flat (col-
lapsed) two-turn coil. For any given coil geometry, 7
can be exactly calculated. Typical values are of the or-
der of 0.7 for a Helmholtz coil, | for a bird-cage ora 3
to 5-turn solenoid, and proportionally more for many-
turn solenoids. Due to the self-resonance limitations,
the m factors for optimal coils tend to decrease with fre-
quency from quite large values (hundreds in the kilo-
hertz range) to about one (or even somewhat less) at
high frequencies (see Table 1| for an educated guess).

Equation (1) can be easily modified for S/N estimates
in high-resolution spectroscopy. Such a modified ver-
sion has been tested against several dozen specifica-
tions given by two major manufacturers of spectrometers
for a number of different nuclei, operating frequencies
and sample diameters. A reasonable agreement has been
found provided that the factors Q, M;, and m follow the
general pattern given in Table | and v,; (the equivalent
input noise of the preamplifiers) is of the order of 4-6
nV/y/Hz. Comforted by this fact, let us proceed to the
implications for NMR imaging.

INTERFERENCE

Both in NMR spectroscopy and NMR imaging we
are faced with the situation where the FID contains a
set of components with different frequencies. Since the
interference between the individual components leads
to a progressive destruction of the FID, we might have
legitimate doubts whether the individual components
can be recovered with the same signal to noise ratio as
though each of them were the only one present.

It can be shown quite easily that both the initial FID
amplitude (i.e., the integral of the absorption spectrum)
and the total signal energy (integral of the power spec-

trum) are additive. Since the noise power is fixed, this
garantees that the S/N ratio of the individual compo-
nents, after having separated them by means of a suit-
able algorithm, is exactly the same as if each of them
were the only one present. More specifically, in the case
of NMR imaging, the $/N intensity for a single voxel,
referred to a single pulse, equals the integral signal-to-
noise ratio S, of the hypothetical FID corresponding to
the same voxel if it were isolated.

It makes no difference whether to recover the image
we have to use |-, 2-, or 3-D Fourier transform or a
projection reconstruction algorithm. If the complete al-
gorithm forces us to use N, pulses, then each compo-
nent will come out with its signal-to-noise ratio

enhanced by \/N,.

MRI RESOLUTION LIMITS

Let us now assume that the characteristic linear di-
mension of the sample is L (assume, e.g., that the sam-
ple is a cube). If linear resolution /, is required, we have
N = LI, linear divisions, and therefore N* voxels, each
with a volume of /,*.

To generate a 2-D image with the same resolution,
we must find means to selectively excite a slice of thick-
ness /. and then apply the readout gradient; the proce-
dure must be repeated N times for each scan. For a 3-D
image, there is no need for selective excitation, but we
must apply N? pulses for each scan.

Example: If L = 1 cm and [ = .1 mm, we have N
= 100, which means 10° voxels with a volume of |
nanoliter each. In order to construct a 3-D map we must
apply 10,000 pulses. In one such complete scan we re-
caver our voxels with a signal-to-noise ratio correspond-
ing to 100 times the S/N ratio of an isolated sample of
I nanoliter.

Another factor to consider is the gradients to be ap-
plied. Suppose that the spectrum of the sample in the
absence of a gradient has a width of S, (Hz), due to any
of the following phenomena:

® Transversal relaxation (natural line width).

® Magnetic field inhomogeneity.

® Chemical shifts spread.

® Magnetic susceptibility variations across the sample.

In all cases the final effect is a defocusing, since the
spectral dispersion masquerades as a spacial dispersion.
In order to recover an undistorted image, the applied
gradients should cause a frequency dispersion from
voxel to voxel at least as large as §,,. The gradient
therefore should be at least

Guin = 2 S/, (2)

The total spread of frequencies, and therefore the
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Table 2. Dependence of the minimum number of pulses
on the resolution

Resolution Number of pulses Gradient Bandwidth
(microns) needed for S/IN = 4 (Gauss/cm) (Hz)
30 74,993,591 23.488 100,000
40 10,010,436 17.616 75,000
50 2,099,341 14.093 60,000
60 585,888 11.744 50,000
70 199,153 10.066 42,857
80 78,207 8.808 37,500
90 34,291 7.829 33,333
100 16,402 7.046 30,000
110 8417 6.406 27,273

120 4578 5.872 25,000

130 2614 5.420 23,077

140 1556 5.033 21,429

150 960 4.698 20.000
160 611 4.404 18,750
170 400 4,145 17,647
180 268 3.915 16,667

190 184 3.709 15,789

200 129 3.523 15,000

The required number of grey levels per voxel is 4. Minimum gradient
strength and receiver bandwidth are also listed, assuming §,, = 3 ppm.
Water sample at 100 MHz, coil diameter 1.2 cm, Q = 100, = 2, M,
= 0.5, preamp v,; = 4 nV/\/Hz,Q, sample diameter 1.0 cm.

minimum receiver bandwidth, will then be
B, = NS, 3)

Upon progressive increase of resolution, the increase
of the required gradients and of the receiver bandwidth
eventually leads to a technological limit independently
of the acquisition time considerations.

The increasing receiver bandwidth contributes to the
already sharp decrease of the single-voxel S/N ratio. In
practice, a reduction of [, by a factor of k decreases the
S/N ratio by a factor of k" (k* due to the volume re-
duction and k"2 due to the bandwidth increase). If the
image quality (S/N ratio per voxel) is to be maintained,
this implies increasing the total number of pulses by the
factor k7 (7th power!). This dramatic increase in ac-
quisition time eventually stops the quest for higher
resolution.

One can carry the above consideration a step further,
The factor of k in resolution will increase the number
of pulses required for a complete 2-D sweep by k, while
the number of pulses required for a 3-D scan will in-
crease by k°. Since, in order to obtain a given image
quality, the number of pulses required by the S/N con-
siderations increases as k’, it is clear that at some (early)
point the latter limit will become dominant and there
will be no advantage (in terms of acquisition time) in

acquiring 2-D images rather than the conceptually sim-
pler 3-D images.

EXAMPLES AND CONCLUSIONS

Table 2 represents a ‘‘practical’’ example. The cho-
sen parameters correspond to a water sample of modest
size (1 cm) measured at room temperature at 100 MHz,
The table should be inspected as follows: given a re-
quired resolution, what is the minimum number of
pulses required to achieve a pre-defined number of grey
levels (in our case 4). The 7th power dependence of the
required number of pulses is nicely illustrated. So is the
fact that — even for such a ‘‘strong”’ sample — it is
hardly feasible to achieve a resolution better than 80 mi-
crons in a reasonable time, The difference between 2-D
and 3-D acquisition times disappears below 100
microns.

Like Table 2, the results listed in Tables 1, 3, and 4
presume maximum proton density of pure water and im-
age quality sufficient to assign 4 levels of grey to each
cubical voxel. Rather than reporting the required num-
ber of pulses, however, the resolutions corresponding
to 100, 1000, 10,000, and 100,000 pulses are listed and
labelled as “*very easy,”” ‘‘easy,’” ‘‘difficult,”” and
*‘crazy,”’ respectively.









