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Abstract

Nuclear magnetic resonance of oriented molecules provides a convenient and precise technique for
determination of molecular geometry. The precision is often high enough for the effect of the
vibrational motions to be felt. In this paper the vibrational corrections are discussed in detail, and a
novel formulation is presented which, apart from its simplicity, provides distinct advantages in
numerical calculations. Although this formulation has not been published so far, a computer
program based on it has been used extensively and with excellent results by the authors and their
collaborators for several years.
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Normal coordinates
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Nuclear magnetic resonance of oriented molecules provides a convenient and precise
technique for determination of molecular geometry. The precision is often high enough
for the effect of the vibrational motions to be felt. In this paper the vibrational
corrections are discussed in detail, and a novel formulation is presented which, apart
from its simplicity, provides distinct advantages in numerical calculations. Although this
formulation has not been published so far, a computer program based on it has been used
extensively and with excellent results by the authors and their collaborators for several
years.

INTRODUCTION

Nuclear magnetic resonance spectra of molecules oriented in anisotropic solvents
(1) often yield extremely precise data on the molecular geometry of the dissolved
species. Since its origins, the method has developed into a standard tool for
molecules whose internal motions are limited to harmonic vibrations around an
equilibrium structure. We will call such molecules rigid. It was suggested very early in
the development of the technique that the apparent geometry of rigid molecules,
calculated from the NMR spectra of their nematic solutions, should be corrected for
the effects due to vibrational motions (2). These effects lead to internally inconsistent
apparent structures. A typical example is the so-called shrinkage effect (3,4): ina
linear molecule of type ABC, for example, the apparent distance r,c between atoms
A and C is always smaller than rag+ rgc. Moreover, the vibrational motions are
weighted differently in different techniques used for determining the geometrical
structure of molecules. This hinders direct comparisons between NMR results and
data obtained by X-ray diffraction, infrared and microwave spectroscopy, electron or
neutron scattering, etc. The results obtained by different techniques can be
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compared among themselves only after they have been separately corrected for the
vibrational effects.

Ideally, the corrections should provide the equilibrium structure (or r. structure).
This is the hypothetical molecular structure which minimizes the electronic potential
within the Born-Oppenheimer approximation. Obviously, the 7. structure is both
consistent and independent of the experimental technique used. The corrections are
calculated by expanding the relevant observable quantities (such as the direct-
coupling constants in NMR) in terms of deviations of the nuclear coordinates from
the r. structure. Within the harmonic approximation, the linear terms average out
and the quadratic terms give rise to the so-called harmonic correction, which can be
calculated rather easily. This correction may be quite large (5) and often exceeds
considerably the experimental errors involved. The molecular geometry calculated
from the experimental data corrected for the harmonic effects is referred to as r,
structure (6), where r, is defined as the distance between the average nuclear
positions at thermal equilibrium.

The difference between the r. structure and the r, structure is due to the
anharmonicity of the vibrational potential and, for directly bonded nuclei, is
often larger than the experimental errors (7). The r, structure, however, is
internally consistent and should be comparable with structures obtained by other
techniques.

For the sake of completeness, we should also note two other limitations of the r,
structures due to the approximations involved, even though their effects are negligi-
ble for all practical purposes. The first approximation consists in neglecting the third-
and higher-order terms in the expansion of the observable quantities in terms of
deviations from the r. structure. Second, the averaging over vibrational motions
requires a complete solution of the vibrational problem in terms of vibrational
frequencies and normal coordinates. This is done by approximating the molecular
potential by a quadratic function of the deviations from the r, structure. Apart from
eliminating all the odd (anharmonic) and the higher-order even terms, this approx-
imation is also sensitive to the choice of coordinates (8). In non-Cartesian coor-
dinates even the kinetic energy part of the Hamiltonian must be approximated.
Somewhat different results are therefore expected for different coordinate sets
employed.

In this paper we present a résumé of the theory of the harmonic vibrational

-corrections in NMR of molecules dissolved in axially oriented solvents. The problem
has never been presented in a comprehensive form. It coinvolves three very distinct
disciplines: the vibrational normal-coordinate theory (classical), the vibrational
mean-amplitude and covariance theory (quantum), and the NMR theory of strongly
coupled high-resolution spectra. The main original contribution of our treatment as
compared with preceding treatments (&) consists in the fact that the vibrational
calculation is done only once for any particular molecule. Its results are conveniently
tabulated in a set of tensors which are then used to calculate the corrections to the
observed direct-coupling constants for any set of orientation tensor components.
This sort of factorization between the vibrational and NMR aspects of the problem
greatly reduces the computer time and allows a better understanding of the observed
phenomena.
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THEORETICAL

The spin Hamiltonian of a rigid molecule must be averaged both with respect to
the molecular tumbling and with respect to the vibrational motions. Given the
difference of the frequencies characteristic for these two types of motion, it is
reasonable to assume that there is no correlation between them. In this case the two
averages can be considered as independent, commutative operations. We will use the
symbol {. . .)n, for the average over molecular tumbling and (. . .), for the average over
vibrational motions.

Consider an interaction of the type I - T - §, where I and 8 are spin operators of two
nuclei and T is a traceless second-rank tensor. Its contribution to the Hamiltonian is

Hr=(I'T:8)n,=(I"T: S)n). (1]

Expanding I- T - § into its components, considering that the molecular-tumbling
averages must respect the symmetry of the surrounding medium which is assumed to
be axial, and taking into account the tracelessness of T, we obtain (9)

- T S)m=HT.)m(3I°S* ~1-8). [2]

Hence
Hr=D(@3I’S*~1-8), [3]

where
D =3{(Tez)m (4]

is the direct-coupling constant.

In practice the most important mechanisms contributing to D are the dipolar
interaction and the indirect-coupling anisotropy. The dominant term is generally due
to the dipolar interaction. To our knowledge, the effect of molecular vibrations on
the indirect-coupling anisotropy has never been considered.

The tensor T” describing the dipolar interaction between nuclei i and j is given by

T = (ki P Ge = 1), Bl

where r” is the internuclear vector, ry is its length, and k;; = ﬁzy,-fy,-; v; and v; are the
gyromagnetic ratios and # is the Planck constant.
Denoting by 6; the angle between r” and H,, we get

HTY, Y= —(ky/ 13X P2(c0S 0;))ms (6]

where P,(x) = (3x*—1)/2 is the Legendre function.

Let us now choose a system of coordinates X, Y, and Z fixed with respect to the
(average) molecular structure. Let Oy, @y, and Oz be the angles between the
respective axes of this system and Hy. Then the tensor defined as

Sap =2(3 €08 ©,c08 Op — 8ug)m, [7]

where a, B = X, Y, Z, is called the orientation tensor. Also expressing the coordinates
of r’ with respect to the laboratory system and using the theorem on composition of
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spherical functions, we may show (9) that

HTe)m = —ky Tr(Se"), (8]
where Tr stands for trace and the tensor ¢ is defined by
els=rird/ri; a4 B=XY,Z [9]
Returning to Eq. [4] we therefore get
Dy = —k; Tr(S®"), [10]
where
Plg = (rarg/rih. [11]

In the following we will deal only with quantities pertinent to the same generic pair
of nuclei i and j. For the sake of brevity we may therefore temporarily drop the
indices i and j. Let us write

r=R+A, [12]

where R is the equilibrium value of r and A is the instantaneous excursion of r from R.
The tensor @ can be expanded in powers of the components of A. The result of the
straightforward but cumbersome calculation is

® = ®° + ®* + ®" + third- and higher-order terms, [13]

where
®%p = R.Rs/R’ = Luls/ R?, [14]
20 = | (5tutdy ~ ka8t |/ [15]

QEB = [Cﬂﬂ -3 z g'r'{car‘rgﬂ + Cﬂ's{u) +%£¢x{ﬁ % Cvfi(?‘:?gﬁ _aw)]/Rs, [16]

and £, = cOS @. ; ¢. is the angle between R and the « axis of the molecular coordinate
system. As before, «, B, ¥, § =X, Y, Z. The quantities C,g, called covariance
matrices, are defined as

Cop ={4a48 ). [17]
With the third- and higher-order terms neglected, Eq. [10] now gives
D=D+d*+d", [18]
where
D°=-k(R-S-R)/R’ [19]
corresponds to the e structure,
d*=—k Tr(S®") [20]

corresponds to the anharmonic term, and
d"=—k Tr(S®") [21]

is the harmonic correction term.
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The corrected D values, given by
D*=D-d"=D+d", [22]

correspond to the r, structure discussed in the Introduction.

In order to determine d" for any desired pair of nuclei, it is necessary to know the
corresponding tensor ®" which, according to Eq. [16], depends only on the geometry
and on the vibrational properties of the molecule. Since the geometry is approxi-
mately known a priori, ®" need be calculated only once; the refinements of the
structure deducted from NMR data have no appreciable effect on its numerical
values.

In order to evaluate ®" one must determine the covariance matrices C,g. Rein-
troducing the nuclear indices i/ and j, one may write A7 as

A” z (uf;) - um:))zm 24 =4X: Y, z’ [23]

where Z, is the amplitude of the normal coordinate of the »th vibrational state, and
u'y stands for the mass-weighted Cartesian components of the normal-coordinate
vector of the »th vibrational state;

i.e.,
ul = UM, [24]

where M; is the mass of the ith atom. The components {U iy represent the »th
eigenvector of the matrix

W=G—1f2FG'-1f2: [25]
where G is the diagonal 3N X 3N matrix with elements
Gi‘a,;‘ﬁ = Mguﬁaijp [26]

and F is the force-field matrix which approximates the molecular potential energy V
through the formula

= % 'Z‘S F ia.fﬁdiaﬁfﬁ- [27]
dex, |
The »th eigenvalue of W will be denoted as w>, where w, is the »th vibrational
frequency.
Using the well-known formulas (3, pp. 74-78) for the meansquare amplitudes of

the normal coordinates, and the orthogonality of the latter, we obtain from Eqgs. [17]
and [23]

N
Cap = Zl (i —ui Wuig —ujg f(w,, T), [28]

where the function f(w,, T) is defined by
flw,, T)=(Z2),= (A/w,) coth(Bw,/T), [29]

where T is absolute temperature, A = h/8x’c, and B = ch/2k; ¢ and k are the
velocity of light and the Boltzmann constant, respectively. When w, is expressed in
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inverse centimeters, T in degrees Kelvin, and f in square angstroms - atomic mass
unit, then A =16.858 and B =0.71942.

In practice, therefore, the calculation reduces to (i) finding an appropriate field and
expressing it in terms of Cartesian displacements in accordance with Eq. [27], (ii)
finding the eigenvalues and eigenvectors of matrix W defined by Eq. [25], (iii)
calculating the covariance matrices C_f,f,g for all nuclear pairs of interest using Eq.
[28], (iv) determining the tensors ®",” for each of the nuclear pairs using Eq. [16],
and finally (v) evaluating the correction terms 4" from Eq. [21].

The last step involves the S-tensor values. These are normally estimated together
with the molecular geometry on the basis of the experimental D values. Special
fitting programs have been developed for this purpose (10). The normal procedure is
to start with uncorrected D values in order to obtain approximate geometry
(ra structure) and an approximate S tensor. The d" values are then calculated as
described and the D values are corrected in accordance with Eq. [22]. These
corrected values are used for a new fit of the structure and the S tensor. The process is
repeated until self-consistency is achieved (usually, one iteration is sufficient). As has
been pointed out before, the successive refinements of the structure have a negligible
effect on the numerical values of the ®" tensors so that only step (v) of the above
algorithm need be repeated in each cycle. It should be pointed out that R in Eq.[16]
is the equilibrium nuclear distance which in actual calculations is approximated by its
r. value because the anharmonic corrections are usually unknown. This introduces
an error in the harmonic correction itself which can reach 4% for directly bonded
3C-H pairs.

A package of subroutines called VIBR for the individual steps of the algorithm
described above has been written in the FORTRAN language and is available on
request. The routines include calculation of atomic coordinates from a versatile
structural code, conversion of valence- and central-force constants into Cartesian
coordinates, calculation of normal coordinates and vibrational frequencies, evalua-
tion of the covariance matrices for specified pairs of nuclei, evaluation of the
corresponding ®" tensors, and calculation of the corresponding d" values. Molecular
symmetry is not taken into account in the calculations: the molecules to which the
NMR technique can be applied are generally not too large, and encoding their
symmetry would be more costly than the straightforward solution of the unfactorized
eigenvalue problem. A comment should be also made on the use of Cartesian
coordinates in the vibrational part of the calculation. It is generally true that the
molecular potential energy is better approximated in valence-bond coordinate
systems. On the other hand, use of such nonlinear coordinate sets implies that the
kinetic energy matrix must also be approximated and that a further approximation is
needed in order to expand the Cartesian displacements in terms of normal coor-
dinates (Eq. [23]). Altogether we feel not only that the use of Cartesian coordinates
from the beginning simplifies the formulas, but that it is hardly inferior even in terms
of precision.

REMARKS AND SPECIAL CASES

From Eq. [16] it is apparent that d" decreases with the internuclear distance as
R 7. Since D° decreases with R >, the relative value of the harmonic correction
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correlates with R °. The biggest relative corrections can therefore be expected for
pairs of directly bonded nuclei. Note that the same reasoning leads to the R’
dependence for the relative value of the anharmonic term. These tendencies can best
be demonstrated by a simple example. Suppose the molecule has an at least
three-fold symmetry axis and identify the latter with the Z axis of the molecular
coordinate system. Then the S tensor is diagonal and Sxx = Syy = -18, S,,=8.
Consider a pair of nuclei coincident with the axis. For symmetry reasons the
covariance matrix C for this pair is also diagonal and Cxx = Cyy = C* and Czz = c'.
Equations [16] and [19] then give

d"=—-6kS(C'-CcY/R*=6(C"- CHD*/R>. [30]
Also for symmetry reasons, (dx), ={(dy), =0, so that Eqs. [15] and [20] give
d*=+3kS{(A;),/R*=-3(A),D°/R. [31]

Another general tendency is due to the fact that the mean amplitudes of vibra-
tional motions decrease with the masses of the atoms involved. The corrections for
pairs of heavy nuclei will therefore generally be much smaller than the corrections for
pairs involving at least one light nucleus such as a proton.

The relative correction may become very large if the corresponding D° value
happens to be small due to an opportune orientation of the nuclear pair under
consideration. This can occur quite often. Due to the tracelessness of the S tensor
there is always a conical set of directions (in general the set forms an elliptical cone)
such that D is zero for any pair of nuclei whose interconnecting vector is parallel to
one of these “null” directions. The harmonic correction 4", however, may be
nonzero even for such nuclear pairs. In order to give an example, consider a molecule
with two mutually perpendicular planes of symmetry 8, and &,. Identify the Z axis
with the intersection of 8, and 8, and let the X and Y axes lie in the §, and 8, planes,
respectively. Consider a pair of nuclei lying on the Z axis. For symmetry reasons,
both the S and C tensors must be diagonal. Writing C, and S, instead of C,. and S....,
respectively, we obtain for Eqgs. [16] and [19]

d"=—(k/R*)[(Cy — Cx)Sy +3(12Cz —7Cx —5Cy)Sz]
= (DE/RQJ[%(IZCZ =T7Cx =5Cy)+(Cy = Cx)(Sy/Sz)]. [32]

Since Cx # Cy, the relative correction can become very large whenever Sz is nearly
zero. Only if the Y axis coincides with an at least three-fold symmetry axis of the
molecule, the relative correction remains nonsingular since then Sy =5 and Sx =
Sz = —3S and therefore

d"=4D°/R*(12 Cz -3 Cx -9 Cy). [33]

As an example, in benzene (17) the harmonic correction for the directly bonded
3C—H nuclei is of the order of 8% ; for all the nonbonded nuclear pairs it is less than
2%. It turns out that, if the structure determination is based exclusively on proton
couplings and the required relative precision is less than 0.5%, the harmonic
correction is ot really necessary.

A case with two independent § values, illustrating the behavior of the harmonic
correction as given by Eq. [32] for a small S value, has been encountered in
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m-dichlorobenzene dissolved in Merck Phase IV (unpublished results). The degree
of order for the C, symmetry axis of this molecule is Sz = 0.002 while the Sy value is
about —0.13. The vibrational corrections for the two *C-H pairs coincident with the
symmetry axis are about +25 Hz, which is about five times the corrected D value!

CONCLUSION

In a certain sense, this paper is a summary of the theory of the harmonic vibrational
corrections in NMR spectra of rigid molecules dissolved in nematic solvents. The
approximations involved have also been discussed in detail.

The importance of the harmonic corrections in structure determinations has been
demonstrated in several papers (5, 11, 12). Since for sets of noncorrected D values it
is in general impossible to find an internally consistent structure, the effect of the
correction can be demonstrated by the decrease of the rms deviation & between the
experimental D values and the corresponding values obtained by fitting the structure
(10). For example, in o-diiodobenzene (5) § drops from 0.376 to 0.101 upon
correction. The main change in geometry is a decrease of C—H bond lengths by about
0.04 A. This illustrates the general fact that vibrational correction is absolutely
essential for directly bonded pairs of nuclei involving one light atom.

As we have already pointed out, further refinement of the vibrational correction
procedure is still possible, especially if data become available on the anharmonicity-
dominated quantities (4, ), (see Eq. [15]). The final goal would then be to determine
the currently inaccessible equilibrium structure.
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