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Abstract:

I. The noise reaching the analog-digital converter of a HR-NMR instrument has been analyzed for
any deviations from normal distribution. Several statistical normality tests had been employed, such
as skewness, kurtosis, second and fourth moment and the correlation between them. It has been
found that any such deviation, if present at all, is below the threshold of detection at 95%
confidence level. Tentative reasons for this fact are listed. The fact that the noise is indeed normal
implies that standard data averaging techniques are indeed the optimal ones and it has no sense to
look for better ones.

II. The simple way of estimating the signal-to-noise ratio (S/N) in HR-NMR spectra consists of
estimating the height of a standard peak (p) and the peak-to-peak amplitude of a segment of the
spectrum containing only noise (n) and setting S/N = 2.5%(p/n). This Note investigates to which
extent such a procedure can be considered objective and reliable. The maximum and the minimum
of a segment of noise with n data points is a well-defined random variable whose statistical
properties can be easily analyzed. In particular, its median and quantiles for any confidence level
are given by explicit formulae. From these it follows that the standard method is depends too much
of the size of the noise segment and should be therefore replaced by a more sophisticated method.
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This being the first of a series of
articles regarding various aspects
of experimental noise in data ac-
quisition and evaluation systems,
we would like to start with a short
explanation of the aim and the
scope of the whole series. The

project started with a plan to write -

a comprehensive review of data
evaluation problems in presence of
noise. Soon it turned out, however,
that only the foreword to such a
review requires a dozen or so pages.
We have therefore decided to post-
pone the synthetic theoretical ap-
proach to a later stage and to start
with a series of short studies on
well-delimited practical problems.

In this paper we investigate the
amplitude distribution function of
the noise reaching the A/D converter
of a high-resolution NMR spectro-
meter.

The noise in the receiver channel
of an NMR spectrometer arises from
a number of sources: noise from the
input transistor of the preamplifier,
thermal noise from the equivalent
shunt resistance of the tuned probe-
head’, noise arising from the sample,
combined noise from all the receiver
components (mixers, gates, IF and
AF amplifiers, relay contacts, filters,
cables, etc.), pick-up noise from
other parts of the spectrometer
(switching transients of logic cir-
cuitry, relays, thyristors, etc.), and
pick-up noise from the surroundings
(atmospheric discharges, power line
transients, etc.). Even though the
noise from some of these sources
has been investigated theoretically,
the combined effect can really be
estimated only empirically.

Considered as a random function
of time, any noise is a very complex
phenomenon which can sometimes
tell us as much about its source as
any old-fashioned signal. The limited
frequency response of any elec-
tronic circuitry implies that any
voltage or current noise is always
a continuous function of time. Even
so, its full description requires an
infinite set of parameters?. Cont-
rary to intuitive statements which

occasionally appear in the literature,
no such thing as perfect random-
ness exists for the simple reason
that it cannot be defined.

There are certain simple properties,
however, which experimental noise
often satisfies to a good degree of
approximation. Thus a noise is said
to be stationary if its properties are
independent of any shift in the origin
of time. In this study we will assume
that this is indeed the case (possible
exceptions: some piezoelectric and
ferroelectric powders can produce
a terrible transient noise decaying
for quite a long time after each
pulse). A noise is called white if the
properties of its Fourier transform
(a random function by itself) are
independent of any shift of fre-
quency origin and/or phase. Ob-
viously, a white noise would spread
over all frequencies and thus carry
infinite mean energy, which is im-
possible except as an approxima-
tion. The autocorrelation function
of a white noise is necessarily an
infinitely sharp delta-function. In
this study, though, we will not in-
vestigate the noise autocorrelation
properties; we will simply assume
that — chosing the final stage
filters wider than the sweep width
— the correlation between two
successive points of the digitized
noise is too small to be of any im-
portance. Finally, a noise is called
normal if its sampled values are
distributed according to the normal
(Gaussian) distribution function 3.
It is this aspect of the noise which
we have tested.

Note that the properties of station-
arity, whiteness, and normality are
totally unrelated among themselves;
none of them does a-priori imply or
exclude any other. Moreover, even
a noise function satisfying all these
properties cannot be considered
“perfectly random" since it is not
unique. Many such functions can
be devised, differing widely among
themselves in other aspects.

On NMR spectrometers of the WH-
and WP-series, the signal passes
through a number of narrow-band

stages (probehead, preamp, IF-
amplifier) followed by the output
filters at the AF level. This re-
presents a chain of filters of dif-
ferent types. It is well known * that,
given any random function with
finite standard deviation, the appli-
cation of any kind of filter always
brings its amplitude distribution
function closer to the normal distri-
bution. Thus, even if the noise at the
source were non-normal, we would
still expect it to be nearly normal
at the A/D converter input. Given
the extreme similarity between all
WH- and WP-type instruments, it is
sufficient to carry out the normality
tests at only one of them. We have
chosen the WP-80 spectrometer (H1
channel, CHCIs/CDCIs test sample).

A total of six single-scan tests have
been run at widely different settings
of sweep width (dwell time) and
filter width. For each of the sweep
widths chosen, two filter widths
were adopted. One was the stand-
ard value set automatically by the
FT-NMR program, while the other
was about three times larger. In
each test, 16K (i. e. 16384) data
points were taken. After correcting
these data for any DC offset, the
second (mz), third (ma), and fourth
(ms) moments were calculated.
These were used to calculate 5 the
skewness

v1=ma/(m2)3?2 &)
and the curtosis
Y2=ma/(m2)?2 -3 (2)

of the sample. These are both very
sensitive indicators of any deviation
from normality as far as the sym-
metry (v1) and the center/wings
balance (v2) of the distribution are
concerned. For normal distribution
v1 = ¥2 = 0. The experimental data
are reported in Table 1.

The question is whether the de-
viations from zero are statistically
significant or not. In order to ans-
wer, we must estimate the expected
deviations under the assumption of
normal parent population. Let us
use the brackets [...] to denote
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Table 1. Summary of the noise normality tests

Sweep width

Filter width

No. (Hz) (Hz) T Y2 $2/v;v=25
1 60 100 —0.007 +0.065 0.51
2 60 300 —0.005 —0.053 ’ 1.55
3 3000 3800 - +0.015 —0.048 1.76
4 3000 15000 —0.026 —0.056 1.55
5 31250 39100 +0.019 +0.021 2.04
6 31250 125000 —0.001 +0.009 0.76
***  Expected values: 0.000 0.000 1.00
Probable errors = (¥): +0.019 +0.038 -
95 %o Confidence intervals: +0.037 +0.074 1.51

*** The probable errors of v1 and y2 were calculated for samples of 16384 points.

mean values. If r is a random vari-
able (in our case the noise ampli-
tude) then the moments (provided
they exist) are defined as

py = [r¥. (3)
The variance of r¥, denoted as A2,
is given by

A2 = [(FR- D] = [r - [P

= Ba” K (4)
Now, if a sample of N numbers
{ro 1=1,2, ... ,N}is taken, A%

exists, and N is a large number,
then — by the central limit theorem?
— the k-th moment of the sample

N
M = (1I/N) = (5)

i=1
has an approximately normal distri-
bution with center at v and stand-
ard deviation 9, given by

oﬁ: A:fN = (g~ pﬁ)/N. (6)
For the normal distribution with

standard deviation ¢ and center at
zero, B is zero for odd k and

+ o
Bag=(1 /uvzn)frkexp (_‘? r?/s?)dr
= 2" (2n)!/(_2'?n!}. )

Hence

p'e 0,1y = o5 i3=0, ke = 39°, (8a)
and

ok = By ok, (8b)
where

3| =1~‘1/N, 32 = VEIN,
B3 =+/15/N, 3 = v96/N. (8¢)

In order to estimate the expected
errors in v1 and vz, we must take
into account the fact that by eli-
minating the DC offset we have
forced m; to be zero. This implies
an error in the offset parameter
equal to —M; which propagates to
the higher moments according to
the well-known formulae 3
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ma2 = Ma — M2, (9a)

ms = Mz — 3MiMz2 + 2M3, (9b)

ma = Ms — 4MiM3 + 6MIM; — 3MJ.
(9c)

Substituting Egs. 9 into Eqg. 1, ex-
panding with respect to deviations
&M of the M's from their means, and
truncating the expansions at terms
decreasing as N~"2for large N, we
obtain

T,= my/ (m,)3?
= (5M,)/33-3 (3M,)/a. (10)

¥y is therefore a difference of two
random variables with standard
deviations f3 and 3p:. The calcula-
tion of the standard deviation of 11
is further complicated by the fact
that, as could be expected, My and
M3 are not independent. Their cor-
relation coefficient ¢ 3 is given by

er,3=[(r-[r]) (- [r*])]/84,
=[r]/84,=3//15 (11)

The expected error in v1 is therefore

e 1) = [B§-2 Prg B(33)+(3 31]2]”2
=v6/N, (12)

An analogous calculation must be

carried out for v2. The expansion of
v2 in terms of 8M's is

1,==(2M,) /54-6 (M) /2. (13)

The correlation coefficient ¢, 4 be-
tween dM4 and My is easily calcu-
lated as

92.4 = [{rE - [].21} (r“' {r“])]"dg A4 =
= ([re]-[r2][r*])/4,8,=3/12. (14)
The expected errorin vz is therefore

s (1)) =[#2-2¢, , 8, (65,) + (68,)%]"
— V24/N. (15)

Comparing the numerical values of
the expected errors (Table 1) with
the experimental data we see that
there is no statistically significant
deviation from normal distribution
as far as the skewness (symmetry)

and curtosis (center/wings balance)
are concerned.

Since skewness and curtosis are
just two global parameters, certain
types of deviations from normality
might still have passed unnoticed.

We have therefore decided to com-
plement each test with a still more
powerful check for normality. This
consisted in constructing a 49
channel histogram of the experi-
mental sample, with each channel
having the width of 0.25 s, s being
the standard deviation of the sample.
The channels were numbered from
—24 to +24. The occurence fre-
quencies in the lowest channels
from —13 to —24 were summed
together and the sum denoted o;.
Analogously, o,was defined as sum
of the occurence frequencies in the
highest channels from +13 to +24.
The occurence frequencies in the
remaining channels were denoted
as ok, where k = —12, —11, .. .,
+11, +12. The expected occurence
frequencies ey were calculated for
the same channels by expanding
the normal probability density func-
tion in each interval into a Taylor
series and integrating over the
interval. The resulting formula is

e = N (0.0994758 -+ 0.0000162 k?)
exp(—k?/32). (16)

The expected frequency e=g;, =gy
was simply read from the tables
of normal distribution function:
e = 0.000893 N. The expected and
observed occurence frequencies
were then used to calculate the %2
value using the Yates's formula ¢

+12,u
= = (lo-el-B) e (17)
K=1,-12

The number of degrees of freedom
is in this case v = 25since two para-
meters (sum of all occurence fre-
quencies and centre of the distri-
bution) are fixed. The reduced x2/v



values are reported in the last
column of Table 1.

The %2 test did reveal significant
deviations from normality in several
cases (see references ® 6.7 for tables
of the x2 distribution). In one case
(test No. 5), the deviation was signi-
ficant even at the 99.5% level, and
three other cases superated the
95%, significance level.

A more detailed analysis of the
problem has shown, however, that
these deviations are due simply to
the digitization round-off errors.
The standard deviations of the
samples varied in fact between 60
and 90 steps of the A/D converter.
This gives about 15 steps for each
histogram channel, so that the
round-off error may reach in the
worst case (1/30)th of the actual
occurence frequency. A simple cal-
culation shows that this may in-
crease the x%/v values for our
samples by as much as 0.7 — enough
to account for the observed ano-
malies.

We may therefore conclude by stat-
ing that even a very detailed and
careful analysis did not reveal any
significant deviation of the noise
amplitude distribution from the
normal distribution function, except
for the obvious interference of the
digitization round-off process.

So far we were concerned only with
the time-domain noise in a single
scan. Since the sym of any number
of random variables with normal
distribution is itself a normally
distributed random variable, our
result implies that the noise remains
normal even after an accumulation
of any number of scans. It is in fact
true that even if the single scan
noise were not normal, the accu-
mulation process would still lead to
a normal noise in the limit of large
number of scans (a straightforward
consequence of the central limit
theorem 3).

By a slight modification of the cen-
tral limit theorem, it is also possible
to show * that for large number of
data points the Fourier transform
of any noise approaches a normal
random function. Whenever the
t-domain noise is normal, the result-
ing w-domain noise is always exactly
normal.

By demonstrating the normality of
the single-scan noise, we have
therefore proved also the normality
of the t-domain noise in accu-
mulated data, as well as the nor-
mality of any w-domain noise. Even
though the experimental part of this

study regards only the WP-80 in-
strument, the theoretical arguments
invoked above guarantee that the
results are likely to apply to any
modern high-resolution FT-NMR in-
strument.
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The signal-to-noise ratio Sn is best
defined as

Sy = kS/s, (1)

where k is a conventional constant,
S is any quantity proportional to
signal intensity (usually the peak
height), and ¢ is the standard de-
viation (root mean square) of the
noise. .

In early days of NMR, when com-
puter evaluation of the data was a
rarity, Varian Associates suggested
using the empirical formula

Sy = 2.5 S/N,p, )

where Ny, is the peak-to-peak am-
plitude of a chosen segment of the
noise. This formula has found wide
acceptance and it is in general use
even today.

In this paper we will show that
despite its popularity, Formula (2) is
inherently contradictory. We will
eventually proceed to suggest a dif-
ferent approach to the Sy evaluation
which, apart from being objective,
precise, and free of contradictions,
should suit well all feasible pur-
poses.

Consider a digitized noise with
normal amplitude distribution (we
have shown' in Part | of this series
that the noise in high-resolution
FT-NMR is indeed normal to a very
high degree of precision). Suppose
n mutually uncorrelated points

{rni=1,2,..., n} are taken into
account. We would like to know the
distribution function for the quantity

N, = Max, (r)— min, (r,). (3)

This is a typical range statistic. The
distribution function of Nypis found?3
to be

D, (3 =n [ IF(x+9)~FI™ d{ i}

(4)
where the Stieltjes integral is em-
ployed and F(x) is the distribution
function of the parent population
from which the r's are drawn. In our
case F(x) is the normal distribution
function

x
F(x}=(1fc1/27~}f exp(—73y/s°) dy.

- @ {5]
Unfortunately, Eq. 4 is rather cum-
bersome and unsuitable for explicit
calculations. The complexity can be
traced primarily to the correlation
between the maximum and minimum
values of r; for small n. Since it is
obvious that this correlation must
vanish for large N, we can restrict
the analysis to this limit and in-
vestigate the distribution functions
of the quantities

M = Max, (r,) and m = min, (r.). ()
For symmetric parent distributions,
the distribution function of m is

identical to that of M with changed
sign of the argument, so that it is
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sufficient to analyse only the latter.

The distribution function Z,, (x) of M
can be easily deduced?®?. By defi-
nition, Z, (x) is the probability that
M is smaller than x, which is ob-
viously equal to the product of the
separate probabilities that each r,
in the sample is smaller than x.
Hence

Z, (x)=[F(x)]". (7

Even though this formula is not
suitable for determination of the
mean value of M, it allows an easy
explicit determination of its most
probable value and of any of its
quantiles (the a-quantile, 0 < a =1,
is that value of x for which the
probability that M < x is equal to a).

Considering that dZ, (x)/dx is the
probability density function of M,
the most probable value M*(n) of M
is given by the solution of the equa-
tion

d’z, (x)/dx* = 0. (8)

From Eqs. 7 and 8 it follows that
M*(n) is the root of the equation

P(x)=1-[F(X)F"()V/[Fx)]*=n. (9)

Scaling the parent distribution in
such away that ¢ =1, Eq.5 becomes

F(x) = 5 [1+erf(x/V2)] (10)
and )
P(x)=1-+v27F(x) xexp (x¥/2). (11)

The function P(x) has been plotted
in Fig. 1, using the approximation to
the error function reported in re-
ference 4. According to Eg. 9, the
most probable value M*(n) of M for
n data points can be read out from
Fig. 1 as that value of x at which
P(x) =n.

The quantiles are even easier to
determine. The a-quantile M, (n) is
the solution of the equation

Z (x)=a (12)

It follows from Egs. 7 and 12 that
Mg (n) is the root of the equation

Q, (x) = In(a)/InF(x) =n. (13)

The functions Q4 (x) are plotted in
Fig.1 for a=0.01, 0.05, 0.5 (median),
0.95, and 0.99. The readout of the
M, (n) value from the graph of Q, (x)
is identical to the readout of M*(n)
from the graph of P(x).

As an example, consider n = 1000
(a likely practical value). From Fig. 1
we determine that the most probable
value of M is M*(1000) = 3.1 s and
the median of M is Mg_s (1000)=3.2¢.
M will be smaller than Mg n(1000)
=265 in only 1% of cases and
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larger than Mo gq(1000) =4.33also in

only 1% of cases.

According to what was said above
about the lack of correlation be-
tween M and m for large values of
N, the most probable peak-to-peak
value (range) N*%;,(n) is approxi-
mately 2M*(n). In the above example
N*pp (1000) =6.2 . This, substituted
into Eq. 2 and compared with Eq.1,
would imply k = 2.5/6.2 = 0.40. The
problem is, however, that N*;p(n)
varies with the number of data

points n. It is equal to 141 for
n=2 48 for n=100, 62 for
n = 1000, 7.4 for n = 10000, and

8.6 for n =100000. Moreover, the
expected deviations in the Npp
values are considerable; for n =
1000, e. g., any value between 5.7
and 7.5 is quite likely. This, of
course, brings to mind the ever-
lasting discussions upon whether
noise peaks can be ignored and, if
so0, which and how many.

In our opinion, the only solution of

this problem consists in abandoning .

Formula (2) and returning to For-
mula (1). The estimation of & for a
chosen section of the noise can be
made by the computer. The prob-
able error of such an estimate is
3 /V'N which is at least one order of
magnitude more precise than in the
case of peak-to-peak value. The
only obstacle is that the user should
have sufficient manual and visual
control over the whole procedure.

Our proposal consists in a routine
incorporated into the standard FT-
NMR software which would i) enable

the user to specify a section of the
spectrum free of any coherent
signal, ii) calculate the standard
deviation & for this section and iii)
substitute the data within the sec-
tion by a step function offset with
respect to the mean by —C & in the
first half and by +C# in the second
half of the interval. Sy would then
be measured as 2.5 times the ratio
of the signal S to the height of this
step.

By chosing C =25 (i.e.,, k=05 in
Eq. 1), we would ensure an approxi-
mate correspondence with the Sy
values determined in the traditional
way. Moreover, this would lead to
placing the two horizontal lines of
the step function at approximately
the same position as in the peak-to-
peak method (i. e., with just a few
peaks of the noise exceeding the
lines), thus enabling a visual check
of the correctness of the calcula-
tion.

We invite a strong critical feedback
from our readers. The proposal, if
adopted, would eventually influence
a procedure carried out daily in
every NMR laboratory. It should
therefore be discussed thoroughly
before attempting to “push it" into
practice.
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Figure 1

Graphs of the functions P (x) and Qg (x).
Curve p represents P (x), curve m represents
the median Qp g(x), and curves a, b, ¢, and d

respectively.
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