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PcBc 
NOVEL AUTOMATIC PHASE & BASELINE CORRECTION ALGORITHM

INTRODUCTION

Manually, phase (Pc) and baseline (Bc) corrections in 1D NMR spectra were always done as separate steps, carried out one after another. In addition, the Bc was always done only on the “real” part of the spectrum and

not on the imaginary part. However, one often notices that there is a mutual interference between the two corrections, causing uncertainty about the best solution in the vicinity of an optimum. In addition, the fact that

baseline correction is not done on the imaginary part implies that when one tries to iterate the whole process, any change in phase parameters brings back into the displayed real part the uncorrected baseline artifacts

present in the imaginary part. Consequently, though a lot of work on the two (separate) corrections has been done over the years, further investigation is still called for. In particular, the problem becomes imperative when

one needs a fully automatic and very robust algorithm to apply in industrial applications of NMR spectroscopy, especially those characterized by a very high sample throughput and/or a continuous or pseudo-continuous

sampling characterizes, for example, a process-control setup.

Here we present recent advances in a novel iterative algorithm in which the ‘quality function’ is based on the amplitude histograms (real and imaginary) of the spectrum. Apart from the exploitation of some convenient

features of histograms, the fully automatic algorithm handles BOTH corrections simultaneously (PcBc rather than Pc + Bc), and it applies the baseline correction to BOTH the real and the imaginary parts of the spectrum.

In summary, PcBc permits us to:

➢ Carry out the phase and baseline corrections simultaneously;

➢ Carry out both corrections (not just the phase) on both the in-phase and the out-of-phase parts of a spectrum;

➢ Enhance the objectivity of the corrections, especially considering that in practice one often encounters situations with multiple and/or ill-defined acceptable ‘solutions’.

Moreover, the manual corrections in current use (especially the phasing procedure) often differ depending of the personal habits of each spectroscopist.
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Pilot idea: the histogram of the 

spectrum
The histogram H() is a diagram of data points counts when

binned according to their height; we keep the size of the bins

normalized so that there are about 5000 of them per Rms(h)

average of the heights of all data points (the horizontal scales

of all histogram plots appearing in this poster are normalized

so that  = 1.0 corresponds to the height  Rms(h).

When an NMR spectrum is properly conditioned, its absorption

mode (real) part contains flat baseline stretches of noise with

no peaks. In terms of histogram of such a data set this implies

a sharp peak in the neighborhood of zero. Comparing the

histograms of an experimental spectrum which is badly

conditioned (Fig.1) with those of the same spectrum manually

properly phased (Fig.2), or baseline corrected (Fig.3), or with

both corrections (Fig.4), we see how their real parts tend to

progressively peak around zero. In the final, properly

conditioned spectrum, the histogram has practically no

intensity at negative co-ordinates which exceed the noise, and

just a small-intensity ‘tail’ at positive co-ordinates.

Observing the histograms of the imaginary part of a properly

conditioned spectrum, it is possible to notice that it is

symmetric with respect to zero and much smaller in maximum

amplitude than the histogram of the real part.

Results using 5 harmonic coefficients for the baseline correction

Example of histograms:

Left column shows the spectra, while the dual right column shows the corresponding histograms of the real

(left side) and imaginary (right side) part of the spectra. The zero position is highlighted by vertical green

lines. For more information, see the text on the left.

Figure 1

Figure 2

Figure 3

Figure 4

Modelling the baseline
For the fitting, apart from the two classical phase parameters ph0 (constant) and ph1 (linear) that

need to be adjusted, we model the baseline correction by means of a linear combination of a pre-

defined number (N) of low-frequency harmonic functions or, alternatively, low-indexed Chebyshev

polynomials. In either case, this introduces 2*N fittable coefficients, because the baseline

corrections for the real and the imaginary parts are considered totally independent.

‘Anchoring’ the baseline
Two points of the baseline, one close to the beginning and another close to the end, are forced to

be zero. This decreases by 2 the dimensionality of the parameters space and helps the algorithm

to ensure a flatter baseline. The ‘anchors’ are actually averages of 16 data points, strategically

positioned to avoid the common smiley artifacts at the extremes of a spectrum.

The quality function
One then needs to construct a quality function Q(p) of all the 2*N+2 fittable parameters p which,

when maximized, forces the histogram to possess the principle characteristics corresponding to

well-conditioned spectra. We define Q(p) as the integral of a properly weighted histogram H() of

a spectrum corrected using the current parameters p. Actually, two such integrals are computed,

Qr(p) for the real part of the spectrum and Qi(p) for the imaginary part, with two different weight

functions, wr() and wi(), respectively, and then added together, Q(p) = Qr(p) + Qi(p). The fact

that this simple scheme is based on an integral over the histogram (and therefore over all

experimental data points) is very important because it represents, as an extra bonus, a concurrent

noise-suppressing filter.

From this point of view, it is interesting to

compare this features with the ones of the

histogram of an ideal Lorentzian line as

shown on the right (with red traces showing

the real parts and green traces the

imaginary parts).

The upper figure shows a normalized

Lorentzian peak, while the other one shows

the respective theoretical histogram.

Note that the sharp asymptotes in the

histogram become sharp peaks once an

experimental noise is added (convolution

with the noise probability function).

The weight functions
Modelling efficient weight functions suitable for our purposes is not an

easy task because there is no rigorous mathematical theory which

might help.

For the real part, it is evident that the area around  =0 should have the

largest height, any negative values should be discouraged (negative

penalty), and discouraged more than positive values for which the

adjusted histograms still maintain some intensity, albeit small (see the

figure on the left).

For the imaginary part, we are using a negative symmetric parabolic

function, making sure that for perfectly symmetric histograms the result

is zero, while any a-symmetric shape generates a negative value (see

the figure on the right).

Wight function for

the imaginary part of

the spectrum

The Flowchart
Hence, in extreme synthesis, the

flowchart to compute the quality

function Q(p) consists of these

simple steps:

1. Take the experimental 

spectrum;

1. Apply Pc + Bc corrections 

defined by the parameters p;

2. For both Qr(p) and Qi(p): 

compute the  histogram of 

the resulting spectrum;

3. For both Qr(p) and Qi(p): 

evaluate the weighted 

integral of the histogram.

The values of the parameters p

are modified in order to minimize

Q(p) = Qr(p) + Qi(p) according to

the down hill simplex algorithm.

Wight function 

for the real part 

of the spectrum
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