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Automatic Concurrent Phase & Baseline Correction

in 1D NMR spectra

INTRODUCTION

The algorithmic problem of phase correction (PC), and that of baseline correction (BC), of 1D NMR spectra have been both tackled many times by many authors over the last half a century.

There are many algorithms which emulate manual procedures. Basically, they all optimize (fit) the parameters which describe either the phase (ph0, ph1) or the baseline (according to various parametric models)

so as to maximize some quality assessment of the corrected spectrum. Historically, the employed quality functions [1, 2] included features such as peak heights, negative peak lobes, symmetry, DISPA patterns

[3], selected baseline points, peak ablation, and others. Here we propose a radically different type of ‘quality function’ Q to be optimized. It is based on the histograms of the spectrum (real and imaginary parts)

which turn out to be very sensitive to both phase and baseline distortions. This permits us to:

➢ Carry out the phase and baseline corrections simultaneously. In traditional approaches these are always done as separate evaluation steps and carried out sequentially (first phase correction and then

baseline correction), even though all NMR spectroscopists know that the two corrections interfere with each other. We think that our approach overcomes this problem.

➢ Carry out the corrections (not just phase) on both the in-phase and the out-of-phase parts of a spectrum. So far, the baseline correction has been always done only on the in-phase part. Since this leaves the

baseline in the out-of-phase part uncorrected, it has various adverse effects on other evaluation tasks.

➢ Enhance the objectivity of the corrections, especially considering that in practice one often faces situations with multiple and/or ill-defined acceptable ‘solutions’. Moreover, the manual corrections in current

use (especially the phasing procedure) often differ depending of the personal habits of each spectroscopist.

We wish to describe here a novel algorithm developed for the stated purpose and illustrate some of the results, even though this is more a feasibility study and work in progress than a finished product.
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Pilot Idea: Let us use the Histograms
When an NMR spectrum is well conditioned, its absorption mode (real) part contains flat baseline stretches

of noise with no peaks. In a histogram of such a data set this implies a sharp peak in the neighborhood of

zero (note: histogram H() is a diagram of data points counts when binned according to their height; we

keep the size of the bins normalized so that there are about 5000 of them per Rms(h) average of the

heights of all data points (the horizontal scales of all histogram plots appearing in this poster are normalized

so that  = 1.0 corresponds to the height  Rms(h).

If we compare the histograms of an experimental spectrum which is badly conditioned (Fig.1) with those of

the same spectrum manually properly phased (Fig.2), or baseline corrected (Fig.3), or with both corrections

(Fig.4), we see how their real parts tend to progressively peak around zero. In the final, properly

conditioned spectrum, the histogram has practically no intensity at negative co-ordinates which exceed the

noise, and just a small-intensity ‘tail’ at positive co-ordinates.

For the histograms of the imaginary part of a properly conditioned spectrum, one notices that it is symmetric

with respect to zero and much smaller in maximum amplitude than the histogram of the real part.

It is also interesting to compare this with the

histogram of an ideal Lorentzian line as shown on

the left (with red traces showing the real parts and

green traces the imaginary parts. The left plot

shows a normalized Lorentzian peak, while the

other one shows the respective theoretical

histogram. Note that the sharp asymptotes in the

histogram become sharp peaks once an

experimental noise is added (convolution with the

noise probability function).

Some preliminary results using 5 harmonic coefficients for the baseline correction

It seems to work! (though some more work is still needed)

Example of histograms:

Left column shows the spectra, while the dual right column shows the corresponding histograms of

the real (left side) and imaginary (right side) part of the spectra. The zero position is highlighted by

vertical green lines. For more information, see the text on the left.

Figure 1

Figure 2

Figure 3

Figure 4

Modelling the baseline
For the fitting, apart from the two classical phase parameters ph0 (constant) and ph1 (linear) that need to be adjusted, we model the baseline correction by means of a linear combination of a pre-defined number

(N) of low-frequency harmonic functions or, alternatively, low-indexed Chebyshev polynomials. In either case, this introduces 2*N fittable coefficients, because the baseline corrections for the real and the

imaginary parts are considered totally independent.

The quality function
One then needs to construct a quality function Q(p) of all the 2*N+2 fittable parameters p which, when maximized, forces the histogram to possess the principle characteristics corresponding to well-conditioned

spectra. We define Q(p) as the integral of a properly weighted histogram H() of a spectrum corrected using the current parameters p. Actually, two such integrals are computed, Qr(p) for the real part of the

spectrum and Qi(p) for the imaginary part, with two different weight functions, wr() and wi(), respectively, and then added together, Q(p) = Qr(p) + Qi(p). The fact that this simple scheme is based on an integral

over the histogram (and therefore over all experimental data points) is very important because it represents, as an extra bonus, a concurrent noise-suppressing filter.

The weight functions
Modelling efficient weight functions suitable for our purposes is not an easy task because there is no rigorous mathematical theory which might help. For the imaginary part, we for now base

it just on a-symmetry, making sure that for perfectly symmetric histograms the result is zero, while any a-symmetric shape generates a negative value. For the real part, it is evident that the

area around  =0 should have the largest height, any negative values should be discouraged (negative penalty), and discouraged more than positive values for which the adjusted

histograms still maintain some intensity, albeit small. There are several other considerations affecting the modelling of the weight functions which, however, exceed the scope of this poster.

The rather simple real-part weight function we have used for the preliminary results shown below is plotted on the left side of this paragraph.

The flowchart
Consequently, in extreme synthesis, the flowchart to compute the quality functions Q(p) follows these steps:

1. <take the experimental spectrum> ==>

2. <apply PC + BC corrections defined by the parameters p> ==>

3. For Qr(p): <compute the histogram of the resulting spectrum> ==> 3’. For Qi(p): <compute the integral over -[imag(H() - H(-))]2> (this is maximum (0.0) when H() is symmetric and negative otherwise)

4. For Qr(p): <evaluate the weighted integral of the histogram> 4’. For Qi(p): <multiply the result by a suitable weight constant>
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