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Abstract

Using a functional substitution and Faà di Bruno formula, Stirling asymptotic series approxi-
mation to the Gamma function is converted into a new one with better convergence properties.
The new formula is compared with those of Stirling, Laplace and Ramanujan for real arguments
greater than 0.5 and turns out to be, for equal number of ’correction’ terms, numerically superior
to all of them. As a side benefit, a closed-form approximation has turned up during the analysis
which is about as good as 3rd order Stirling’s (maximum relative error smaller than 1e-10 for real
arguments greater or equal to 10.)

1. The Bell polynomials. Suppose that h (z) = f (g (z)) and let

hn =
dnh (z)

dzn
, fn =

dnf (z)

dzn
, gn =

dng (z)

dzn
;

then by applying the chain rule the first few derivatives of h (z) are given by

h1 = f1g1,

h2 = f1g2 + f2g
2

1
,

h3 = f1g3 + f23g1g2 + f3g
3

1
.

The general form is given by Faà di Bruno’s formula

hn =

n
∑

k=1

fkBn,k (g1, g2, ..., gn−k+1).

Here Bn,k denotes a homogeneous polynomial of degree k and weight n in the gm, called the Bell
polynomial (see [2]). Another notation is

Bn (g1, g2, ..., gn) =

n
∑

k=1

Bn,k (g1, g2, ..., gn−k+1), (1)

which is the complete Bell polynomial.

They have the explicit form

Bn,k (g1, ..., gn−k+1) =
∑ n!

j1!...jn−k+1!

(g1
1!

)j1

...

(

gn−k+1

(n− k + 1)!

)jn−k+1

, (2)

here the sum runs over the set of all partitions of n with k parts, or in other words, over all
solutions in non-negative integers jm of the equations

n−k+1
∑

m=1

jm = k,

n−k+1
∑

m=1

mjm = n.
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Another important formula (We will use it to obtain the general term of an asymptotic series.)
is the generating function of the complete Bell polynomials given by

B (z) = exp





∑

m≥1

gmz
m

m!



 = 1 +
∑

n≥1

Bn (g1, g2, ..., gn)
zn

n!
. (3)

There is also a more general application in the study of power series, for example let

f (z) =
∑

m≥0

am

zm

m!
, g (z) =

∑

m≥0

bn
zn

n!
,

then

f (g (z)) =
∑

n≥0

∑n

k=1
akBn,k (b1, b2, ..., bn−k+1)z

n

n!
.

2. Stirling’s series. Before introducing the new Gamma function approximation, let us first
review the proof of the well-known Stirling series (see [1]).

Theorem 1 Let z ≥ 1, then

ln (Γ (z)) =

(

z − 1

2

)

ln (z) − z +
1

2
ln (2π) +

∑

n≥1

B2n

2n (2n− 1) z2n−1
. (4)

The series is divergent for all values of z, but the partial sums can be made an arbitrarily good
approximation for large enough z. Here the Bn denote the Bernoulli numbers (see [1]).

Proof. In the proof we will apply the Euler-Maclaurin Summation Formula, the Trigamma func-
tion and the Wallis product.

The Trigamma function is defined by

ψ1 (z) =
d2 ln (Γ (z))

dz2
=

∑

n≥0

1

(z + n)
2
.

We apply the Euler-Maclaurin Formula to find an asymptotic approximation to the function
∫ ∞

0

dx

(z + x)
2

=
1

z
.

We get the expression

1

z
=

∫ ∞

0

dx

(z + x)
2

=
1

2z2
+

∑

k≥0

1

(z + 1 + k)
2
−

∑

n≥1

B2n

z2n+1
.

By plugging the Trigamma function into this formula and solving for it we get

ψ1 (z + 1) =
1

z
− 1

2z2
+

∑

n≥1

B2n

z2n+1
.

Repeated integration gives an asymptotic series for the Gamma function which, however, contains
an integration constant ω.

ln (Γ (z + 1)) = ω +

(

z +
1

2

)

ln (z) − z +
∑

n≥1

B2n

2n (2n− 1) z2n−1
(5)

In the limit case, this gives the following asymptotic approximation for Γ (z + 1).

Γ (z + 1) ≈ zz+ 1
2 e−zeω, as z → ∞.
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To evaluate the constant we apply the Wallis product for π,

π

2
=

∏

n≥1

(2n)
2

(2n− 1) (2n+ 1)
.

Some manipulation gives the

√

π

2
= lim

n→∞

(2n)!!√
2n (2n− 1)!!

= lim
n→∞

22n (n!)
2

√
2n (2n)!

(6)

expression. We also have
Γ (n+ 1) = n! ≈ nn+ 1

2 e−neω,

if n is an integer. Inserting it into (6) we arrive at

lim
n→∞

22n
(

n2n+1e−2ne2ω
)

(2n)
2n+ 1

2 e−2neω

1√
2n

=

√

π

2
⇔ ω → 1

2
ln (2π) .

Replacing ω in (5) by 1

2
ln (2π) completes the proof.

3. The new asymptotic series. In this section we introduce a new series approximation to
the Gamma function for large values of z.

Theorem 2 Let z ≥ 1, then the following asymptotic series is valid

Γ (z) =

√

2π

z
e−z



z +
∑

n≥1

bn
zn−1





z

, (7)

as z → ∞. The bn coefficients are given by

bn = Bn (0, B2, ..., (n− 2)!Bn)
1

n!
. (8)

Proof. First we rewrite Stirling’s series in the form

1

z
ln

(

Γ (z)
( e

z

)z
√

z

2π

)

=
∑

n≥1

B2n

2n (2n− 1) z2n
.

Taking the exponential of each side gives

e

z
z

√

Γ (z)

√

z

2π
= exp





∑

n≥1

B2n

2n (2n− 1) z2n



 . (9)

To expand the right side of the equation to a series we can apply the generating function of the
complete Bell polynomial (3) that we mentioned above. Here the variable is z−1 instead of z. If
we use the same notations the gn coefficients take the form

g1 = 0 and gn =
n!Bn

n (n− 1)
= (n− 2)!Bn, if n ≥ 2.

Since B3 = B5 = B7 = ... = 0. This means that our expression (9) becomes

e

z
z

√

Γ (z)

√

z

2π
= 1 +

∑

n≥1

Bn (0, B2, ..., (n− 2)!Bn)
1

n!zn
.

By solving for Γ (z) we finally arrive at our asymptotic formula and it completes the proof.
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The computation of the coefficients. From (1), (2) and (8) we can compute the numerical
values of bn. The Bernoulli numbers start

Bn = 1,−1

2
,
1

6
, 0,− 1

30
, 0,

1

42
, 0,− 1

30
, . . . (n ≥ 0) .

So bn = 0 if n is odd and the first few values of the even-indexed coefficients are

b2 =
1

2
B2 =

1

12

b4 =
1

12
B4 +

1

8
B2

2 =
1

1440

b6 =
1

30
B6 +

1

24
B2B4 +

1

48
B3

2 =
239

362880

b8 =
1

56
B8 +

1

60
B2B6 +

1

288
B2

4 +
1

96
B4B

2
2 +

1

384
B4

2 = − 46409

87091200

Thus the expansion (7) starts

Γ (z) =

√

2π

z
e−z

(

z +
1

12z
+

1

1440z3
+

239

362880z5
− 46409

87091200z7
+ ...

)z

.

b2 0.08333333333333333333333333333333333

b4 0.00069444444444444444444444444444444

b6 0.00065861992945326278659611992945326

b8 -0.00053287817827748383303938859494415

b10 0.00079278588700608376534302460228386

b12 -0.00184758189322033028400606295961969

b14 0.00625067824784941846328836824623616

b16 -0.02901710246301150993444701506844402

b18 0.17718457242491308890302832366796470

b20 -1.37747681703993534399676348903067470

Table with numerical values of bn.

Peter Luschny showed that this asymptotic series can be expanded into a half-integer continued
fraction formula

n! =
√

2π

(

n+
1

2

)(n+ 1
2 )
e−(n+ 1

2 )























(

n+ 1

2

)

(

n+ 1

2

)

+
1

24

(

n+ 1

2

)

+
3

80

. . .























(n+ 1
2 )

. (10)

This formula is particularly useful if we want to approximate the factorial function for both small
and large values of n (see [4]).

4. Numerical comparisons. Although we considered an asymptotical formula, i. e. a
formula which is optimized for use with large values of x, it is for practical purposes also of interest
to know the behaviour for small values of x. Therefore we will compare in this paragraph the
numerical performance of some asymptotic formula to the Gamma function with our formula in
the range x ∈ [0.5 .. 50].

To this aim we introduce the relative error of an approximation a(x) to Γ (x). This can be
defined as

δ (x, a) = 1 − a (x)

Γ (x)
. (11)
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We compare the following approximation formulas

σ(x) =
(x

e

)x
√

2π

x
exp

(

1

12x
− 1

360x3
+

1

1260x5
− ...

)

(Stirling series) ,

λ(x) =
(x

e

)x
√

2π

x

(

1 +
1

12x
+

1

288x2
− 139

51840x3
− ...

)

(Laplace formula) ,

ρ(x) =
(x

e

)x
√

2π

x
6

√

(

1 +
1

2x
+

1

8x2
+

1

240x3
− ...

)

(Ramanujan formula) ,

ν(x) =
(x

e

)x
√

2π

x

(

1 +
1

12x2
+

1

1440x4
+

239

362880x6
− ...

)x

(Nemes formula) .

The second expression is sometimes incorrectly called Stirling’s formula (see [6]).

The following graph showes the relative error of these formulas to the Gamma function. The
plotted quantity is |ln (a (x) /Γ (x))| ≈ |1 − a (x) /Γ (x)|. The first computed values are for x = 0.5.
Thick traces indicate a (x) > Γ (x), thin ones a (x) < Γ (x). Color codes for various families: blue
- Stirling, green - Laplace, brown - Ramanujan, red - Nemes. The number after a name indicates
the power of (1/x) in the last kept term in the expansion. The following curves overlap: Laplace 2
overlaps Stirling 1, Ramanujan 2 overlaps Nemes 2 for large x, Nemes 4 overlaps Nemes Closed,
Nemes 6 overlaps Stirling 5. For Nemes Closed formula, see the Section 5.

Figure 1: Relative errors of Gamma function approximations.

Conclusion. From the graph we see that the first and the third Laplace approximations
outperform the corresponding Ramanujan formulas, but these expansions do not contain the same
number of terms. Ramanujan 2 gives better approximation than Laplace 2 and Nemes 2, though
the latter is nearly identical for larger values of x. The graph also shows that, for equal number of
’correction’ terms, the Nemes formulae are always better than all the other (e.g., Nemes 4 is better
than Stirling 3, Ramanujan 2 and Laplace 2). The Stirling and Nemes formulas are very useful,
because they use only half of the powers of the variable contrary to the Laplace and Ramanujan
series.

The behavior of the closed formula is very interesting, it gives approximately the same value
as Nemes 4 and a better one than Stirling 3, even though it contains only one ’correction’ term.
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5. An interesting closed approximation. We can get a good closed approximation to
the Gamma function if we approximate the Laplace series by a much simpler function. Write up
Laplace’s formula in the form

Γ (z) =
(z

e

)z
√

2π

z

(

1 +
1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+

163879

209018880z5
+ ...

)

.

There exists a function which has a very similar series expansion

(

1 +
1

15z2

)
5
4
z

= 1 +
1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+

16997

149299200z5
+ ... .

By exchanging the series for this function we get

Γ (z) ≈
(z

e

)z
√

2π

z

(

1 +
1

15z2

)
5
4
z

(12)

which is valid for large values of z. This is Nemes Closed in the comparison paragraph.

Acknowledgement. I want to thank Peter Luschny, Péter Simon and Stanislav Sýkora for
discussing with me some of the points in this paper.

Comments. Peter Luschny gave another definition of the bn coefficients which is equivalent
to the formula we obtained above. If we write our formula in the form

Γ (z) =

√

2π

z





z

e

∑

n≥0

b2n

z2n





z

, (13)

the b2n coefficients can be computed by

∑

∑ j
1

piµi=2n

Bµ1
p1

µ1! (p2
1 − p1)

µ1

Bµ2
p2

µ2! (p2
2 − p2)

µ2
...

B
µj
pj

µj !
(

p2
j − pj

)µj
. (14)

Here the sum runs over all partitions of 2n with even parts.

The error curves were generated by Stanislav Sýkora using Matlab. For more information about
this please visit his website: www.ebyte.it
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