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This Note illustrates how even simple mappings often hide a non-intuitive inner richness. The functions
exp(z) and its inverse log(z), for example, despite their apparent ‘uneventful smoothness’, define two
denumerable sets of complex constants, namely the fixed points of the exponential mappings exp(z) and
-exp(z). We analyze these two sets, including algorithms for their computation.
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Introduction
The exponential [1, 2] mapping! E (a)
E*(a){z} = exp(a2), (1)

with a being a constant, is certainly among the most ubiquitous ones in natural sciences as well as in
engineering. One reason for this is the fact that its derivative is proportional to its value. It is therefore
the simplest possible model for first-order evolution phenomena in which the rate of change of a time-
dependent quantity is proportional to its current value. These include simple growths (expansions,
explosions, ...), as well as decays (extinctions, relaxations, ...), all of utmost practical importance.

We do not dwell here on the various definitions of the exponential endomorphism in various domain sets
such as real and complex numbers [3, 4], nor on their elementary properties which are amply treated in
most calculus textbooks and other places. This Note addresses just the question of the existence and
properties of fixed points of E*(1). Considering that fixed points [5] of any mapping? are among its most
notable characteristics, and considering the importance of the exponential function, the interest in the
set of its invariants appears more than justified.

In most practical applications, the constant a in equation (1) can be normalized to unity by a suitable
change of scale (domain metric), which is the special case we are going to consider here:

Et: E{z} = exp(2). (2a)
We will also consider a closely related endomorphism in  defined as

E~: E~{z} = —exp(2) (2b)
or, more compactly,

E*: E*{z} = +exp(2) (2¢)
By definition, a fixed point3 z; of a function maps onto itself, which in our cases means:

+exp(z) = z;, 3)

Itis evident that E™ has no solution in the domain of real numbers. In the domain € of complex numbers,
however, such solutions exist (try, for example, z; =0.31813... + i*1.33723...) and we will see that they
form a denumerable set.

Using Z to denote the complex conjugate of z, and considering that, for any z in C,
exp(2) = exp(2), (4)

itis clear that when z; satisfies either of the equations (3), so does Z, . All fixed points of E* in C therefore
come in conjugate pairs. We will see that the two conjugate members of each pair are distinct, with the
exception of a single real-valued invariant of E~.

From equations (3) it follows that, for any fixed point of E®
z; = Log(#z;) = log(#z;) + 2nKj, (5

where Log(z) is the multivalued logarithmic function [6, 7, 8] in C, log(z) is its main branch, K is any
integer (positive or negative), and j is the imaginary unit.

YIn general, M (p4, p,, ... ){e} denotes the result of the application of an endomorphism M(p,,p,, ...) inaset S to an
element e € S. The optional values p4, p,, ... are parameters specifying M in more detail.

2 Also called invariant points (of a function), invariant elements (of a set), or just invariants (of a mapping).

3 Throughout this Note, the subscript i stands for ‘invariant’ point/value. Other subscripts, such as k will be used for
indexing purposes and assume integer values.
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In fact, each of the mappings

Ly = log(#z) + 2nKj (6)
is a right inverse of E*. More specifically, we have

E* L% {z} = z for any integer K, while (7a)

Ly E*{z} = z + 2nK]. (7b)

Let us now see the implications of equations (3). A complex number z can be written as
z=r.exp(ip) =u+jv, 3

where ¢ = Arg(z) + 27K, with K being an integer denoting the complex plane branch index,
r = Abs(z) = Vu? + v2, u = Real(z) = r.cos(¢), and v = Imag(z) = r.sin(¢)

are real-valued quantities (respectively azimuth, magnitude, real part and imaginary part).

For fixed points z; of EZ, the defining equations (3) and (7) give

zi=u; +jv; = £ exp(u; +jv;) = £ exp(u;) (cos(vy) + J. sin(vy)). 9
This leads to the following constraints on the real-valued components u;, v; of z;:

r? =u? +v? = exp(2u;), (10a)

vi/u; = sin(v;)/cos(v;) = tan(vy), (10b)

sign(u;) = #sign(cos(v;)). (10c)

Equations (10a, 10b) allow us to formulate two functional constraints on u; and v;, each defining a curve*
in the Cartesian complex plain (Figure 1):

v? = f(u;), with the real function f(u) = exp(2u) — u?, (11a)
u; = g(v;), with the real function g(v) = v/tan(v). (11b)

Since v; is real, the expression under the square root in equation (11a) must be non-negative, implying
u; >—-W(1)= —0.56714 ... (OEIS [9] A030178 [10]), with W(x) denoting the Lambert W function [11,
12]. The fact that v; appears in (11a) as a square underlines the already established fact that when z;is
an fixed point of either of the two mappings, so is also its complex conjugate. Hence, when u; > 0, when
taking the square root of f(u;) both signs are admissible.

Any fixed point of E* with nonzero v; must satisfy both (11a) and (11b). It is evident from Figure 1 that
there indeed exists a denumerable set of pairs (u;,v;) which meet these conditions. For a full
characterization, however, the constraint (10c) must be also taken into account. When v;is non-zero then
u; must be positive, and (10c¢) implies that, for the fixed points of EZ, we require #cos(v;) > 0.
Consequently, for E*, v; must lie in one of the intervals (27k — 7/2, 27k + n/2). As illustrated in Figure
1 (green dots), this eliminates half of the intersections between the functions f(u) and g(v). The
remaining intersections (red dots) are those with v; in an interval (27k + 7/2,27k + 37/2) and mark
the fixed points of E™.

There remains the special case when v; = 0 in which (10Db) is satisfied trivially and (11b) does not apply,
(10a) implies a negative u; = —W (1), and (10c) indicates that it is an fixed point of E~ only (in Figure 1,
the red dot marked as z,).

41t may appear a bit unusual that for the first curve v is a function of u, while for the second one the two variables are
interchanged. However, one can easily redefine the curves by means of a parameter t and the pair of equations [u(t)=t,
v(t)=f(t)] for the first case, and [u(t)=t/tan(t), v(t)=t] for the second one.
3
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Figure 1: Fixed points of E* (green dots) and E~ (red dots)

This graph displays the conventional Cartesian complex plane reflected about its diagonal, so
that the real and imaginary axes are interchanged. The blue lines illustrate the curve u =
v/tan(v) which has a singularity at every nonzero multiple of ©, marked by a blue vertical line,
and a zero at every half-integer multiple of . The tiny blue dots are g(v) points computed at
regular intervals of v and displayed as a visual aide. The brown line illustrates the curve v? =
exp(2u;) — u?. Its value at v = 0 is u = —W (1), corresponding to the only real-valued fixed
point. All other fixed points of the two mappings correspond to the intersections between the
two curves. There is an alternation between the fixed points of E* (green dots, odd indices) and
those of E~ (red dots, even indices). For more details, see the text.
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We can now summarize the above analysis as follows:

The mappings E*have in € a denumerable set of fixed points denoted as z,, k = ---—2,—1,0,1,2 ..., with
odd indexes marking the fixed points of E* and even indexes those of E~. For any k, the values z,z_;
form a conjugate pair with distinct members, with the only exception of z, which is real.

It is interesting to note how the branch index K kind of 7ades out of view’once we get to the invariants
of the mappings E™ or E~. The solutions of the equation exp(z) = z, for example, have all the same status
because the function exp(z) has no branches; only its right inverse log(z) has them. The branch indices
play a background role which, however, is important because it permits a neat organization and
classification of all the solutions.

Relation to the Lambert function W

Rewriting equation (3) as —(#1) = —z; exp(—z;) , it is evident that the invariant elements are negated
values of the multi-valued, complex Lambert W (z) function [11] atz = —1 (for E¥) and z = +1 (for E7).

By definition, W (u) satisfies W(u)exp(W(u)) = u. Taking a logarithm and re-arranging a bit, we get
W) = log(W(u)/u) + 2rlj, with [ being a generic integer yet to be defined®. Setting u = —1 and
W (—1) = —z,, we recognize equation (5) for fixed points of E* (with odd index k). Similarly, setting u =
1 and W(1) = z,, we recognize equation (5) for fixed points of E~ (with even k). All these findings can
be expressed in a compact way, valid for any index k, as

z = Wi ((=D¥), L = —floor((k + 1)/2), (12)

where W, (z) denotes the L-th branch of W (z). The chosen value of L is the one which guarantees a match
between our fixed points numbering and the conventional indexing of the branches of Lambert W.

Asymptotic formulas
It is evident from Figure 1 that when z;, = u; + jv, and k > 0 then, first of all,
k—VDr<v, <(k—-1/2)7 (13)
More precisely, when k — oo, the value of v, tends to the upper border of the above interval:
kaH—>w(k—1/2)ﬁ (14)

Once the behavior of v, is known, that of u;, can be deduced from equation (11a). Considering that u,
tends towards infinity, the term exp(2u) in the function f(u) becomes soon dominant, so that

ue =2 log(wi) — log((k —1/2)7) (15)

The convergence is very fast. For k = 11, for example, the ratio log ((k -1/2) 7[) /Uy is 0.99931..., in error
by less than 0.0007.

Attractors of the mappings Lx” and the fixed points of £~

A fixed point z; of a mapping may (but need not) be its attractor [5], meaning that, starting from any point
of an attraction basin, and applying the mapping iteratively, the consecutive images converge to z;.
However, this does not help us much in the case of the mapping E* because it does not have in € any

5 Its presence, however, justifies to use of main-branch logarithm rather than the more generic multi-valued one.
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attractor at all. One can see this empirically, trying to start at any randomly chosen point z in € and
applying to it iteratively the function exp(z). The result is that, after a few steps, the consecutive images
start diverging, giving rise to an overflow. It is not difficult to prove that for E™ this behavior is universal,
but for the purposes of this Note, a simple statement of the empirically verifiable fact is sufficient.

The mapping £~ has in C one attractor which is the fixed point z, (the fixed points z,; of E~ with nonzero
k are not attractors of E™ as, again, one can easily ascertain empirically). The convergence of the sequence
of consecutive images to z, upon iterated repetitions of E~ is not very fast. The distance to z, drops
exponentially with a factor which has a limit of about 0.567... (curiously, it appears to converge to |z,|).
Depending on the choice of the initial point z;;;, the progression may start with a few apparently erratic
looking steps before it settles into a smooth approach towards the attractor. For z;,,; settings with large
real values one may run into numerical overflow or underflow problems but those do not mean that the
iterations would not eventually converge if sufficiently large precision were available.

Given any mapping M with a right inverse M, 1, it is evident from definitions that any invariant of the
latter is also an invariant of the former. Moreover, should M, 1 have an attractor, the attractor would be
necessarily its fixed point, and therefore an invariant of M. In practice it often happens that, when M has
an fixed point which is not an attractor, then the same value is an attractor of one of its right inverses.

Applied to our case, we see from equation (7a) that, for any K, Lk is a right inverse of E*. Therefore,
should Ly have in C an attractor, the latter would be necessarily a fixed point of E. Extensive empirical
testsé show that, in fact, the following is true:

For any non-zero integer K, each of the mappings L} and Lk has in € a unique attractor whose attraction
region is the whole of €. The attractors of Ly match our fixed points z,, those of L match z,x,, for
positive K, and z_ ;41 for negative K.

Moreover, the mapping L§ has in € two mutually conjugate attractors matching our z; and z_; whose
attraction regions are, respectively, the upper and lower parts of the complex plane. Since log(0) is
undefined, however, one must avoid as starting points z;,; = 0 and all those real z;,,; values which would
end up at z = 0 upon a repetitive application of L}, which are

0,1, e e”e ete’e, .. (16)

Finally, considering that, as discussed above, the mapping E~ has in € an attractor, it is not surprising
that L; does not have any.

Numeric evaluation

Armed with the knowledge of the attractors gained in the previous Section, it is now easy to code software
functions for numeric evaluation of the fixed points. We do it using the free PARI/GP software [13]
because it is simple, allows arbitrary precision, has intrinsically implemented unlimited-precision
exponential and logarithmic functions, and is free. However, the code snippets listed below are properly
commented to make clear the algorithm(s) which are anyway simple and easily portable to other
programming languages.

The PARI functions listed in the box on the following page can be used to compute the value of any of the
fixed points discussed above. Prior to calling these functions, one must set a desired default precision of
the calculations and the global variable Eps_used to interrupt the iterations. For example, to generate the

5 A rigorous proof of the statement is relatively easy. In the context of this Note, however, | consider satisfactory extensive
empirical tests which were carried out for various starting points over an a square region covering the interval of [-10,+10]
on both real and imaginary axes, with a step of 0.1. The proof will be given for a more general situation, to be discussed
in another document.
6
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Tables in the next Section, we have configured the PARI/GP system to 20 digits precision by executing
the following commands:

default (realprecision, 20)
Eps = 5*%10.0" (-default (realprecision))

There are two functions, ExpzEQz(K) to compute an invariant of E* (namely, the solution of the equation
exp(z) = z corresponding to the K-th branch of log(z)), and ExpzEQmz(K) to compute an invariant of
E~(namely, the solution of exp(z) = —z for the same branch of log(z)).

ExpzEQz (K, sgn=1) = {

Solves for exp(z)= z in the K-th branch of log(z).
Set the optional second argument to -1 to select the
solution with negative imaginary part in case of K=0
(it has no effect when K is nonzero).

Prior to calling this function, make sure that the
Global variable Eps 1is set to the desired precision,
compatibly with default (realprecision).

my (z=1+sgn*I,zlast=z,ncyc=1); \\ z ini is set to 1+I

while (ncyc, \\ The cycle will be terminated by a 'break'
z=log(zlast) +2*Pi*K*I; \\ Apply the mapping (L+) K
if (abs(z-zlast)<Eps_ ,break); \\ Test for termination
zlast=z;ncyc++); \\ Proceed to next iteration

\\ Uncomment next two lines to play with convergence rate

\\ print ("Cycles: ",ncyc);

\\ print ("Convergence factor per cycle: ",Eps " (1.0/ncyc));

return(z) ;

Solves for exp(z)= -z in the K-th branch of log(z).
Prior to calling this function, make sure that the
Global variable Eps_ 1is set to the desired precision,
compatibly with default (realprecision).

my (z=-1.0,zlast=z,ncyc=1); \\ z ini is set to -1
while (ncyc, \\ The cycle will be terminated by a 'break'
if (K, z=log(-z)+2*Pi*K*I, \\ K!=0: apply mapping (L-) K
z=—exp(z)); \\ K==0: apply -exp(z)
if (abs(z-zlast)<Eps_,break); \\ Test for termination
zlast=z;ncyc++); \\ Proceed to next iteration
\\ Uncomment next two lines to play with convergence rate
\\ print ("Cycles: ",ncyc);
\\ print ("Convergence factor per cycle: ",Eps "~ (1.0/ncyc));
return(z) ;

Computational performance:
Both functions use a simple iterative procedure to approach the desired attractor - and fixed point - with
the specified precision. As is usual in algorithms of this type, the convergence, after a few atypical points,

7
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is exponential in the sense that the distance of the current value from the attractor drops by an
approximately constant factor ¢ < 1 in every iteration. Algorithms of this type are usually classified as
‘efficient’, even though it is the slowest convergence type to which the label can be applied.

One can easily experiment with the above code and, in particular, find out the number of steps required
to reach a given precision and/or the value of the convergence factor c. It turns out that these features
depend relatively little on the choice of the initial value z;,; and they differ somewhat (not too much)
between the two mappings. They are strongly dependent, however, on the branch index K, with the
efficiency increasing sharply with increasing absolute value of the branch index (see Table I).

Table I: Selected convergence data obtained with 100 digits precision
The rounded c values are averages over the whole runs.

K Default z;,,; Zini = 1234 + 4321j
ExpzEQz ExpzEQmz ExpzEQz | ExpzEQmz
Cycles | cfactor | Cycles c factor Cycles Cycles

0 832 0.72802 | 466 0.56737 838 overflow
1 131 0.13318 176 0.22300 132 176

2 102 0.07508 113 0.09660 102 113

4 83 0.04150 | 86 0.04638 83 87

8 69 0.02176 70 0.02298 69 71

16 59 0.01137 | 60 0.01226 59 60

32 52 0.00622 52 0.00622 52 52

64 46 0.00321 | 46 0.00321 46 46

One might think that a more realistic initial estimate for z;,,; would reduce the number of required cycles.
It does, but not much, the performance boost is not significant. Typically, one can save four cycles for very
low K and not more than one, or even none, for K values exceeding 3 or so. For the present purposes,
therefore, a better z;,,; estimate is irrelevant.

The convergence can be improved using various ‘tricks’. For example, replacing the mapping L{ = log( z)
with (z + 3 * log( z))/4 drops the c factor for ExpzEQz(0) from 0.728 to 0.651, and the number of cycles
from 832 to 616 (for the 100-digits precision). However, the same modification is counterproductive for
|K| = 1 and, increasingly so, for all higher values of K.

More powerful attractor convergence-acceleration methods exist but they are beyond the scope and
focus of this investigation. Knowing that we can compute any of the fixed points to any desired precision
within a few seconds? is more than sufficient in the present context.

70n my (slow) PC, evaluating z; to 1000 digits (using the unmodified algorithm) takes about 7 seconds, and substantially
less for the higher invariants. Any evaluation with 20-digits precision takes at most a fraction of a millisecond.
8
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Table II: First 100 fixed points of the mapping exp(z)

All these z,values with odd k are solutions of the equation exp(z) = z, and values Wy (—1) of the
Lambert W function in its K-th branch. These properties are shared also by their complex conjugates
corresponding to negated values of k and K (hence, the Table covers 200 fixed points). The values are
roundedto 20 significant digits.

K |k Real part of z,, Imaginary part of z, Modulus (abs. value)

0 |1 0.3181315052047641353 | 1.3372357014306894089 | 1.3745570107437074865
1 |3 2.0622777295982838850 | 7.5886311784725126226 | 7.8638611760942326688
2 |5 2.6531919740386972866 | 13.949208334533214455 | 14.199290151670056423
3 |7 3.0202397081645011514 | 20.272457641615221810 | 20.496204202872711234
4 |9 3.2877686115440937515 | 26.580471499359145698 | 26.783033576712299097
5 [ 11 [3.4985152121541032651 | 32.880721480068912759 | 33.066319023131964923
6 |13 |3.6724500687098179322 | 39.176440021735248576 | 39.348193634318031682
7 |15 [3.8205543078136768665 | 45.469265403710858577 | 45.629494097261815144
8 |17 |[3.9495227424225290276 | 51.760122004020700577 | 51.910586201313703517
9 |19 [4.0637417027918296891 | 58.049573434477498900 | 58.191640057243662522
10 [ 21 | 4.1662424475284168612 | 64.337984120359044986 | 64.472736693917066956
11|23 [4.2592078559390358387 | 70.625600802137234815 | 70.753913956917891655
12 [ 25 |4.3442623028349102442 | 76.912596859781745855 | 77.035187873277373807
1327 |4.4226473672790146136 | 83.199097908843236152 | 83.316563194724870684
14 [ 29 | 4.4953334317186493053 | 89.485197323844476396 | 89.598038833167046103
15[ 31 | 4.5630933498256177846 | 95.770966045047388159 | 95.879610752864670458
16 | 33 | 4.6265526777907663625 | 102.05645899156936319 | 102.16127354128986205
17 | 35 | 4.6862248854570079366 | 108.34171938138198275 | 108.44302127011768619
18 [ 37 | 4.7425366350665273407 | 114.62678171714661533 | 114.72484796488215741
19 [ 39 |[4.7958463114371479629 | 120.91167389694539266 | 121.00674785483738111
20 | 41 | 4.8464578566848846867 | 127.19641873639019421 | 127.28871549795660145
21 |43 [4.8946312688228741701 | 133.48103508588498562 | 133.57074583477101020
22 |45 [ 4.9405906854558158013 | 139.76553866384870535 | 139.85283420194601160
23|47 [4.9845306899927294777 | 146.04994268706757471 | 146.13497632358655411
24 149 [5.0266212897345808108 | 152.33425835379593357 | 152.41716829081774774
2551 [5.0670118879905553236 | 158.61849521840106895 | 158.69940653582470276
26 | 53 [ 5.1058344847351415135 | 164.90266148505363712 | 164.98168780394902598
27155 [5.1432062789111839778 | 171.18676424024908290 | 171.26400912589327096
28 | 57 [5.1792318017940729570 | 177.47080963858814112 | 177.54636779115675430
2959 [5.2140046793078506666 | 183.75480305246963217 | 183.82876132326994226
30 | 61 | 5.2476090981418515602 | 190.03874919365249244 | 190.11118745706381227
31|63 [5.2801210334721515443 | 196.32265221269375744 | 196.39364411801728192
32 [ 65 [5.3116092833443259707 | 202.60651578084207299 | 202.67612940361654139
33|67 [ 5.3421363451414094768 | 208.89034315791056874 | 208.95864156660215897
34 169 [5.3717591622123910223 | 215.17413724886400359 | 215.24117899995292545
3571 [5.4005297630802567021 | 221.45790065125995818 | 221.52374022344702525
36|73 | 5.4284958112583310149 | 227.74163569523091469 | 227.80632387164348681
3775 [5.4557010802693059180 | 234.02534447734647888 | 234.08892868313515300
38 | 77 | 5.4821858657549232642 | 240.30902888942616813 | 240.37155349093566094
3979 [5.5079873444166780900 | 246.59269064316373370 | 246.65419721387533102
40 [ 81 [ 5.5331398878125835450 | 252.87633129125965415 | 252.93685884889337171
41183 [5.5576753376564941299 | 259.15995224562865855 | 259.21953746412580544
42185 [5.5816232481521108739 | 265.44355479314600886 | 265.50223219269968996
43187 [5.6050110999879676582 | 271.72714010931383374 | 271.78494222715440780
44189 [5.6278644898795157909 | 278.01070927016253876 | 278.06766681441998568
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45| 91 5.6502072989365675449 | 284.29426326264876516 | 284.35040525129061150
46 | 93 5.6720618426327954479 | 290.57780299376787101 | 290.63315688033879808
471 95 5.6934490047382487703 | 296.86132929856340620 | 296.91592108622207589
48 | 97 5.7143883572297640684 | 303.14484294718694227 | 303.19869729233976360
49 | 99 5.7348982679048538539 | 309.42834465113764351 | 309.48148495780234641
50| 101 | 5.7549959971818823835 | 315.71183506879113748 | 315.76428357468036632
51| 103 | 5.7746977853648307282 | 321.99531481031077776 | 322.04709266550356607
52 | 105 | 5.7940189314780593586 | 328.27878444202066622 | 328.32991178098439584
53| 107 | 5.8129738646298018831 | 334.56224449030831749 | 334.61274049794294597
541109 | 5.8315762087382781832 | 340.84569544511520531 | 340.89557841741296268
55| 111 | 5.8498388413477107527 | 347.12913776306530511 | 347.17842516291088157
56 | 113 | 5.8677739471702199474 | 353.41257187027487876 | 353.46128037885181647
57| 115 | 5.8853930669111363430 | 359.69599816488092296 | 359.74414372909820305
58 | 117 | 5.9027071418676957738 | 365.97941701932074828 | 366.02701489562834901
59| 119 | 5.9197265547327105752 | 372.26282878239092930 | 372.30989357731351068
60 | 121 | 5.9364611669842532857 | 378.54623378111025031 | 378.59277948879332434
61 | 123 | 5.9529203531984889287 | 384.82963232240816926 | 384.87567235944048843
62 | 125 | 5.9691130325845787667 | 391.11302469465765445 | 391.15857193240653729
63 | 127 | 5.9850476980072365210 | 397.39641116906894784 | 397.44147796374138499
64 | 129 | 6.0007324427333598115 | 403.679795200095882009 | 403.72439022158006011
65| 131 | 6.0161749851136035185 | 409.96316743090815901 | 410.00730848539071251
66 | 133 | 6.0313826913873148771 | 416.24653768581923681 | 416.29023254527855980
67 | 135 | 6.0463625967794932027 | 422.52990297988269820 | 422.57316220134096432
68 | 137 | 6.0611214250410129013 | 428.81326351546317559 | 428.85609726306929706
69 | 139 | 6.0756656065679515036 | 435.09661948391144383 | 435.13903754879366162
70 | 141 | 6.0900012952222333118 | 441.37997106631015708 | 441.42198288516692302
71| 143 | 6.1041343839637092534 | 447.66331843415944641 | 447.70493310668481938
72| 145 | 6.1180705193930514150 | 453.94666175000798563 | 453.98788805523923308
731147 | 6.1318151152952797313 | 460.23000116803454094 | 460.27084757970196540
74 |1 149 | 6.1453733652652143244 | 466.51333683458449792 | 466.55381153553659977
75| 151 | 6.1587502544885351661 | 472.79666888866539806 | 472.83677978443625481
76 | 153 |1 6.1719505707453227152 | 479.07999746240510787 | 479.11975219398522321
77 | 155 6.1849789146968547119 | 485.36332268147588124 | 485.40272863734266848
78 | 157 | 6.1978397095109632647 | 491.64664466548725340 | 491.68570899294670969
791159 | 6.2105372098763410461 | 497.92996352835041822 | 497.96869314423736800
80 | 161 | 6.2230755104517631140 | 504.21327937861648478 | 504.25168097939697812
81 | 163 | 6.2354585537922066422 | 510.49659231979078146 | 510.53467239110678513
82 | 165 | 6.2476901377902564721 | 516.77990245062517144 | 516.81766727631855378
83 | 167 | 6.2597739226679374667 | 523.06320986539016125 | 523.10066553604011338
84 | 169 | 6.2717134375511778494 | 529.34651465412842044 | 529.38366707513384954
851|171 | 6.2835120866564480887 | 535.62981690289118334 | 535.66667180212723338
86 | 173 | 6.2951731551167083801 | 541.91311669395887211 | 541.94967962903455162
87 | 175 | 6.3066998144716086202 | 548.19641410604716135 | 548.23269047118906677
88 | 177 | 6.3180951278448951759 | 554.47970921449959770 | 554.51570424708489718
89 1179 | 6.3293620548301684816 | 560.76300209146779100 | 560.79872087822796150
90 | 181 | 6.3405034561044865714 | 567.04629280608010672 | 567.08174028899538243
91 | 183 | 6.3515220977878060704 | 573.32958142459971014 | 573.36476240650279067
92 | 185 | 6.3624206555648796759 | 579.61286801057274181 | 579.64778716047901173
93 | 187 | 6.3732017185849750345 | 585.89615262496733851 | 585.93081448314765722
94 | 189 | 6.3838677931536328039 | 592.17943532630415590 | 592.21384430911517715
95 | 191 | 6.3944213062296314142 | 598.46271617077899508 | 598.49687657526496230
96 | 193 | 6.4048646087393635138 | 604.74599521237808738 | 604.77991122065711569
97 | 195 | 6.4151999787199461308 | 611.02927250298654704 | 611.06294818643353904
98 | 197 | 6.4254296243015758888 | 617.31254809249046163 | 617.34598741572800585
99 | 199 | 6.4355556865388955847 | 623.59582202887305318 | 623.62902885358091530
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Table III: First 100 fixed points of the mapping -exp(z)

All these zj,values with even k are solutions of the equation exp(z) = —z, and values Wy (1) of the
Lambert W function in its K-th branch. These properties are shared also by their complex conjugates
corresponding to negated values of k and K. The values are roundedto 20 significant digits.

K | k | Real partof z, Imaginary part of z;, Modulus (abs. value)

0 [o -.5671432904097838730 | 0.0 0.56714329040978387300
1 |2 1.5339133197935745079 | 4.3751851530618983855 | 4.6362846327866251895
2 |4 2.4015851048680028842 [ 10.776299516115070898 [ 11.040663126685179665
3 |6 2.8535817554090378072 | 17.113535539412145913 [ 17.349813471433227303
4 |8 3.1629527388040840093 | 23.427747503755212819 | 23.640296595593230026
5 [10 [3.3986921967647194819 | 29.731310707828526210 [ 29.924938513784595158
6 |12 [3.5892625245295749005 | 36.029021703427674892 | 36.207364035180120433
7 |14 [3.7492425412169807420 | 42.323145361236994865 | 42.488886228062835869
8 |16 [3.8871164495491617985 | 48.614898564936282096 | 48.770052663201005218
9 |18 [4.0082620531092576890 | 54.904997123349749065 | 55.051111467448501113
10 [ 20 |4.1163046640017699831 | 61.193891331956510477 | 61.332179974579289957
11 [ 22 [4.2138049147167743704 | 67.481879520015322941 | 67.613313891667480627
12 [ 24 |4.3026389193033564509 | 73.769167656040994602 | 73.894538352539890299
1326 |4.3842225073788582586 | 80.055902804540732194 [ 80.175862831928912352
14 [ 28 | 4.4596505195112867401 | 86.342192948825070346 | 86.457288680413260959
15|30 [4.5297870804820397976 | 92.628119271810462660 | 92.738813076441984604
16 [ 32 | 4.5953262041331040497 | 98.913744054924693970 [ 99.020431153805539279
17 [ 34 |4.6568337148901730335 | 105.19911592355408442 [ 105.30213716418821256
18 [ 36 [ 4.7147769993763328246 | 111.48427342777463854 | 111.58392511411608544
19 [ 38 | 4.7695465967269711403 | 117.76924754616840906 | 117.86578910917723828
20 |40 |4.8214721753602549192 | 124.05406347404712454 | 124.14772353273613724
21 [ 42 ]4.8708345616349407896 | 130.33874192479432236 | 130.42972313036992191
22 |44 14.9178749363625923611 | 136.62330009289826365 | 136.71178304068686994
2346 |4.9628019635879969342 [ 142.90775237744401410 [ 142.99389879607677913
2448 ]5.0057973856476142074 | 149.19211093309842126 | 149.27606630716158435
2550 [5.0470204642215697094 | 155.47638609494158672 | 155.55828183902526276
26 [ 52 | 5.0866115417413472166 | 161.76058670974591975 | 161.84054198394728735
27 [ 54 ]5.1246949243013037730 | 168.04472039698825060 | 168.12284363336565493
28 [ 56 |5.1613812355204892332 | 174.32879375646336395 | 174.40518395059799069
2958 [5.1967693537516344162 | 180.61281253487824132 | 180.68756034513046397
30 [ 60 | 5.2309480181242990694 | 186.89678176062119523 [ 186.96997044885466315
31 [ 62 | 5.2639971691199272642 | 193.18070585361043732 [ 193.25241209437894229
32 [ 64 [5.2959890746558078217 | 199.46458871546065663 | 199.53488329539461357
3366 |[5.3269892815873713487 | 205.74843380398031330 | 205.81738222899691626
34 [ 68 | 5.3570574241345213790 | 212.03224419510083221 [ 212.09990721982021968
3570 | 5.3862479142974862234 | 218.31602263465445024 | 218.38245672583049377
36 | 72 | 5.4146105343494619033 | 224.59977158189883753 | 224.66502932561582984
3774 | 5.4421909476139879136 | 230.88349324629023289 [ 230.94762370702158671
3876 |5.4690311406889710131 | 237.16718961870144044 | 237.23023865698679099
39 [ 78 | 5.4951698078704236249 | 243.45086249804395310 [ 243.51287305245042078
40 [ 80 | 5.5206426866111739794 | 249.73451351406809815 [ 249.79552585220876007
41 [ 82 | 5.5454828513132150239 | 256.01814414696918045 [ 256.07819608961731863
42 [ 84 |5.5697209715137988182 | 262.30175574431199743 [ 262.36088286604242282
4386 |5.5933855395213576190 | 268.58534953569396135 [ 268.64358534497827657
44 88 | 5.6165030717390311774 | 274.86892664549320378 | 274.92630274675498519
45190 |5.6390982872432236983 | 281.15248810398850364 | 281.20903434377172676
46 [ 92 | 5.6611942666327753584 | 287.43603485708964603 | 287.49177945619699026
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47 | 94 5.6828125937079478494 | 293.71956777487754442 | 293.77453744808464749
48 | 96 5.7039734821593086487 | 300.00308765912132896 | 300.05730772386066454
49 ] 98 5.7246958891303409298 | 306.28659524991320002 | 306.34008972514057330
50 | 100 | 5.7449976172527183817 | 312.57009123154005419 | 312.62288292784249110
51| 102 | 5.7648954065304659987 | 318.85357623769282991 | 318.90568683956457433
52 | 104 | 5.7844050172612737544 | 325.13705085609949437 | 325.18850099719938643
53| 106 | 5.8035413050240519794 | 331.42051563265504320 | 331.47132496476081475
54 | 108 | 5.8223182886265517530 | 337.70397107511136602 | 337.75415833140193830
55| 110 | 5.8407492117915537339 | 343.98741765638098264 | 344.03700070960467938
56 | 112 | 5.8588465992615056463 | 350.27085581750118728 | 350.31985173352420714
571114 | 5.8766223079168907406 | 356.55428597029881566 | 356.60271105747293981
58 | 116 | 5.8940875734308322227 | 362.83770849979048016 | 362.88557835453064558
59| 118 | 5.9112530529196556200 | 369.12112376634854333 | 369.16845331526859946
60 | 120 | 5.9281288639948243096 | 375.40453210765919274 | 375.45133564657703892
61 | 122 | 5.9447246205745668674 | 381.68793384049563150 | 381.73422507058629691
62 | 124 | 5.9610494657725691389 | 387.97132926232652352 | 388.01712132367299499
63 | 126 | 5.9771121021454197615 | 394.25471865277735527 | 394.30002415554356887
64 | 128 | 5.9929208195493266585 | 400.53810227496023775 | 400.58293332838818703
65| 130 | 6.0084835208293316624 | 406.82148037668582148 | 406.86584861609882305
66 | 132 | 6.0238077455403056572 | 413.10485319156939181 | 413.14876980354586468
67| 134 | 6.0389006918779530029 | 419.38822094004181594 | 419.43169668590819643
68 | 136 | 6.0537692369795046333 | 425.67158383027479650 | 425.71462906805218573
69 | 138 | 6.0684199557374038951 | 431.95494205902882452 | 431.99756676395544359
70 | 140 | 6.0828591382548054051 | 438.23829581243129499 | 438.28050959617162366
71 | 142 | 6.0970928060588726256 | 444.52164526669143316 | 444.563457395332875877
72 | 144 | 6.1111267271764662043 | 450.80499058875796414 | 450.84640999968688579
731146 | 6.1249664301666829046 | 457.08833193692482778 | 457.12936725466571394
74 | 148 | 6.1386172171956792069 | 463.37166946138968546 | 463.41232901248390249
75 | 150 | 6.1520841762311602720 | 469.65500330476947457 | 469.69529513176354566
76 | 152 | 6.1653721924267176519 | 475.93833360257683212 | 475.97826547718422472
77 | 154 | 6.1784859587597568663 | 482.22166048366082387 | 482.26123991915589404
78 | 156 | 6.1914299859809807831 | 488.50498407061507394 | 488.54421833351297126
79 | 158 | 6.2042086119282099270 | 494.78830448015608563 | 494.82720060122803532
80 | 160 | 6.2168260102526593603 | 501.07162182347427368 | 501.11018660814367245
81 | 162 | 6.2292861986015949348 | 507.35493620655998689 | 507.39317624472113333
82 | 164 | 6.2415930462975080609 | 513.63824773050658429 | 513.67616940580457659
83| 166 | 6.2537502815505324494 | 519.92155649179243510 | 519.95916599039977476
84 | 168 | 6.2657614982377388000 | 526.20486258254354013 | 526.24216590146625104
85 | 170 | 6.2776301622801490603 | 532.48816609077831721 | 532.52516904572189881
86 | 172 | 6.2893596176457797309 | 538.77146710063595389 | 538.80817533345921151
87 |1 174 | 6.3009530920047263843 | 545.05476569258960570 | 545.09118467837232026
88 | 176 | 6.3124137020602148725 | 551.33806194364560536 | 551.37419699739409922
89 | 178 | 6.3237444585776471489 | 557.62135592752974670 | 557.657212210542656477
90 | 180 | 6.3349482711319421499 | 563.90464771486161541 | 563.94023024077658089
91 | 182 | 6.3460279525918978136 | 570.18793737331785561 | 570.22325101385836310
92 | 184 | 6.3569862233588639544 | 576.47122496778518647 | 576.50627445822545302
93 1186 | 6.3678257153757039076 | 582.75451056050391490 | 582.78930050486845650
94 | 188 | 6.3785489759208235752 | 589.03779421120262882 | 589.07232908721601042
95| 190 | 6.3891584712009490132 | 595.32107597722469961 | 595.35536014102590944
96 | 192 | 6.3996565897553283716 | 601.60435591364717136 | 601.63839360428208886
97 1194 | 6.4100456456831122258 | 607.88763407339256846 | 607.92142941709709615
98 | 196 | 6.4203278817048203786 | 614.17091050733411083 | 614.20446752161971035
99 1 198 | 6.4305054720680261337 | 620.45418526439478775 | 620.48750786194739232
12
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Final remarks

We have analyzed the structure and some of the properties of the denumerable set of points in € which
are mapped onto themselves under the exponential mappings +exp(z). It turns out that the separate
denumerable sets of fixed points of the two mappings are closely related and, to classify them and get a
clear view of their relationships, it is best to study them together as a single construct.

By-products of the analysis:

- We will explored in more detail elsewhere the numerical evaluation of the Lambert Wk function in all
its branches (indexed by the integer K). The fixed points which were discussed here regard only the
values Wx (£1), but a generalization to any other value is easy to envisage.

- The fixed points z; are simple poles of the following functions
For odd k, s(z) =1/(exp(z) — z) (17a)
For even k t(z) = 1/(exp(2) + z). (17b)

The first of these is particularly interesting since it has no singularity on the real axis, nor on the
imaginary axis. When considered as a real function of real variable, it looks as a peak with a maximum at
the origin, an asymptotically exponential decay for positive arguments, and an asymptotic decay of the
1/x type for negative arguments. The convergence radius of its Taylor expansion is |z, |. A spectroscopist,
for example, might interpret it as an asymmetric spectral peak and compare it with the symmetric
Lorentzian peak shape which is ubiquitous in spectroscopy. What might surprise him is the fact that all
its complex poles (the z;, with odd k) have their real parts positive and are therefore shifted away to one
side of the location of its maximum. The second function has for real arguments a singularity at z, (a
negative value) but no singularity along the imaginary axis. Both functions, shown in Figure 2, look like
they might merit further investigation.

- The fixed points are also complex solutions of the following equations:
For odd k: z?2 —2z+*cosh(z) +1 =0, z?—2z=*sinh(z) —1=0. (18a)
Forevenk:  z?+2z=xcosh(z) +1=0, z%+ 2z+sinh(z)—1=0. (18b)
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Appendix

PARI/GP programs were written to automate the generation of the Tables Il and III.
These are their listings:

Tab ExpzFixed (Kmax,file) = {

2
Lists fixed points of the mapping exp(z) with positive
imaginary parts, one corresponding to each K, the branch
index of log(z). Generates a 5-column plain text file with
one line for every K, ranging from 0 to Kmax.

The columns are: K, k=2*K+1l, followed by the z k values,
namely its real part, imaginary part, and absolute value.

__________________________________________________________ */
SetEbDefaults (20) ;
for (K=0,Kmax, z=ExpzEQz (K) ;

write(file,K,"\t",2*K+1,"\t",

real (z),"\t",imag(z),"\t",abs(z)));
}
Tab ExpmzFixed (Kmax, file) = {
2
Lists fixed points of the mapping -exp(z) with positive
imaginary parts, one corresponding to each K, the branch
index of log(z). Generates a 5-column plain text file with
one line for every K, ranging from 0 to Kmax.
The columns are: K, k=2*K, followed by the z k values,
namely its real part, imaginary part, and absolute value.
__________________________________________________________ */

SetEbDefaults (20) ;
for (K=0, Kmax, z=ExpzEQmz (K) ;
write (file, K, "\t",2*K,"\t",
real (z),"\t",imag(z),"\t",abs(z)));

OEIS registrations

Several of the z;, values were present in OEIS [9] before this Note was written, registered in contexts
related to the present topic but stopping at the very first steps, congruent with just the main branch of
the logarithmic function (K = 0, |k| < 1). These are:

Z A030178 (negated)
74 A059526 (real part), A059527 (imaginary part) , A238274 (modulus)

Submitted, but pending:

A few more registrations will be made8 by the Author:
Z, A276759 (real part), A276760 (imaginary part) , A276761 (modulus)
Z3 A277681 (real part), A277682 (imaginary part) , A277683 (modulus)

823 Nov 2016: now approved
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