
 Stan’s Library, Volume V, Mathematics 

   1 
S. Sykora, On some number densities related to coprimes, DOI: 10.3247/SL5Math14.005 

 

 
 

On some number densities related to coprimes 
Stanislav Sykora, Extra Byte, www.ebyte.it 

First published in November 15, 2014 

This brief essay explores the limit mean densities of subsets of natural numbers m such that the pair (m, 
m\b) is either coprime or not coprime. Here m\b = floor(m/b) denotes the operation which can be also 
characterized as “truncation of the last digit in base b” or “right truncation in base b”. The analysis leads 
to an interesting rational-valued function. 
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Introduction 

This brief Note explores subsets of natural numbers m which, in a base b > 1, have the property rtc(m;b) 
such that 

 gcd(m, floor(m/b)) = 1        (1) 

and those with the complementary property rtnc(m;b) such that 

 gcd(m, floor(m/b)) > 1.        (2) 

Here gcd(n,m) = gcd(m,n) denotes the greatest common divisor of the integer numbers n and m, as 
defined in [1]. Particularly, for any n ≥ 0, 

gcd(n,1) = 1   and   gcd(n,0) = n.       (3) 

To simplify the notation, we will in the following write 

 floor(m/b)  m\b.         (4) 

Evidently, the RTC property is equivalent to saying that m and m\b are coprime, while the RTNC property 
is true when m and m\b are not coprime1. Since the two properties are logically complementary, it follows 
that: 

Lemma 1: Every natural number n satisfies either (1),i.e., has the RTC property, or (2), i.e., has the RTNC 
property, but not both, because the two properties are mutually exclusive. 

For example, in base 10, numbers like 1, 12, 38, 103, 1111, or 8399 belong to the RTC category, while 
numbers like 2, 3, 4, 26, 39, 147, 729, or 3705 belong to the RTNC category. These two sequences were 
listed in Online Encyclopedia of Integer Sequences, OEIS [2]; see references [3,4]. Their starting terms 
are: 

RTC: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 35, 37, 38, 41, 43, 45, 47, 49, 
51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 67, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 87, 89, 91, 92, 94, 95, … 

RTNC: 2, 3, 4, 5, 6, 7, 8, 9, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 42, 44, 46, 48, 50, 55, 60, 62, 63, 64, 66, 68, 
69, 70, 77, 80, 82, 84, 86, 88, 90, 93, 96, 99, 100, 102, 104, 105, 106, 108, 110, 120, 122, 123, 124, … 

Similar sequences can be computed for any base b. In base b = 16, for example, the 10000th RTC number 
is (in hexadecimal notation) 0x42D9, while the 10000th RTNC number is 0x5DFF [5, 6]. 

From the linearity of the graphs in references [3,4,5,6] it appears that the fraction of each of these subsets 
of natural numbers in the interval 1  m  M converges for M to a constant mean value. 

                                                           
1 The acronym RTC stands for “right-truncated is coprime”, and RTNC stands for “right-truncated is not coprime”. 
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This Note is concerned with evaluating this limit mean density of RTC and RTNC numbers for every base 
b > 1. To do so, we will concentrate on the limit mean density c(b) of RTC numbers. Given the 
complementarity of the properties, the limit mean density of RTNC numbers is then nc(b) = 1 – c(b). 

 

Construction of the mean-density formula 

First, let us analyze what the RTC and RTNC conditions imply. Any natural number m can be written as 

 m = b*n + d,   0  d < (b-1),        (5) 

where d is the last digit in its power expansion in base b. Equation (1) then requires m and n to share no 
divisor greater than 1, and therefore no prime factor p. In the following, we will find useful 

Lemma 2: The RTC condition of equation (1) is equivalent to saying that n = m\b and d, the last digits of 
m, are coprime. Similarly, the RTNC condition of equation (2) is equivalent to saying that n and d have a 
common prime divisor.  

Proof: whenever n and d have a common prime divisor p, it is also a divisor of m, and therefore a common 
prime divisor of m and n. Vice versa, when m and n have a common prime divisor p then (m/p) – b*(n/p) 
is an integer and, since it equals (d/p), it must be also a divisor of d. 

Prime factors p which are not divisors of d are therefore easy to handle because no matter how we choose 
n, the numbers m and n can not be both divisible by p (note that this covers automatically also all primes 
p ≥ b). We will be therefore focus mostly on primes p < b and digits d < b such that p is a divisor of d. 

For the purposes of this section, we assume that 2b  m < M = b*N+2b, where N is a large number which 
will be eventually allowed to grow to infinity2. It is also convenient to concentrate on the RTNC condition 
which is slightly simpler to handle. 

For every one of the b possible values of d, there are N possible choices of n and therefore N pairs (m,n). 
If these were not at all limited, we would end up with a density of the subset equal to b*N/(M-2b) = 1. 
Vice versa, if none of these passed a condition, the density would be 0. Of course, the RTNC condition 
imposes more specific selections which we will now analyze. 

Consider first the case d = 0. For all such numbers (N values), equation (5) generates (m, n) non-coprime 
pairs that need to be included. When b=10 and N=8, for example, these are the numbers 20, 30, …, 90. 

Another special case is d = 1 for which equation (5) generates N pairs (m,n) which are all coprime and 
therefore must be excluded. In our example of b=10 and N=8, these are the numbers 21, 31, …, 91. 

Note that when b = 2, the two above cases exhaust all possibilities, giving c(2) = 1/2. 

Now consider a base b > 2, and all the d values, 1 < d < b, which contain a prime factor p1 < b. There are 
(b-1)\p1 such cases and for each of them we must include the N\p1 values of n which are divisible by p1. 
The total is ((b-1)\p1)(N\p1) included values for every prime p1 < b. 

If all digits d >1 were divisible by just one prime, we would have: 

 t(b,N) = N +  prime p1<b [(b-1)\p1](N\p1), 

 nc(b) = lim N t(b,N)/(bN) = [lim N t(b,N)/N]/b = [1 +  prime p1 [(b-1)\p1]/p1]/b, 

                                                           
2 The “offset” of 2b is used just to avoid the limited number of cases which might require the use of special conventions 

for the greatest common divisor function, namely gcd(1,n) = 1, and gcd(0,n) = n for n  1. With b = 10, for example, 
these arise whenever m < 20. Fortunately, it is clear that the limit density of any infinite subset of natural numbers does 
not change when a finite number of starting elements is skipped. 

http://ebyte.it/library/Library.html
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where t(b,N) denotes the total number of included values of n. In the last passage, we have exploited the 
obvious fact that lim N (N\p)/N = 1/p, and we have dropped the relation p1 < b which is superfluous 
because when p1 ≥ b the corresponding term evaluates to zero. This completes the cases b = 3, 4, 5, and 
6, for which nc(b) evaluates to 1/2, 13/24, 8/15, and 26/45, respectively. 

However, for bases b > 6, some of the digits d have two distinct prime divisors, say p1 < p2. Consider, for 
example, the case of d = 6, divisible by both 2 and 3. In such cases the last formula is in error because we 
have counted twice all those n which are divisible by both p1 and p2. To correct the situation, we must 
add to the count e(b,N) a negative correction term of the type 

 - prime p1<p2 [(b-1)\(p1p2)](N\(p1p2)) 

This resolves the problem for d values containing two distinct prime divisors, but not for those containing 
three of them (the first such case occurs for d = 2*3*5 = 30, which can occur in bases b > 30). These were 
“over-corrected” and need another correction term of the form 

 + prime p1<p2<p2 [(b-1)\(p1p2p3)](N\(p1p2p3)), 

and so on, according to the iterative inclusion-exclusion principle [7]. 

Collecting all the terms one finally obtains the correct count of all the included pairs:  

 t(b,N) = N + k>0 (-)k-1  prime p1<p2<…<pk [(b-1)\(p1p2…pk)](N\(p1p2…pk)) 

and nc(b) = [lim N t(b,N)/N] / b. 

It is convenient to define a new function s(b) of b, such that: 

 s(b) = lim N  t(b+1,N)/N =  

          = 1 + k>0 (-)k-1  prime p1<p2<…<pk [b\(p1p2…pk)]/(p1p2…pk)   (6) 

 nc(b) = s(b-1)/b   and   c(b) = 1 – nc(b) = 1 – s(b-1)/b.    (7) 

Notice once again that the summation for s(b) is always finite and the resulting values are all rational. 
Moreover, the formula for s(b) admits the extension to s(0), namely s(0) = 1. 

Since a manual evaluation of equation (6) for large values of b can be a bit cumbersome, the Appendix 
offers a PARI/GP script to handle this task.  
 

Numeric values and tests 

The rational-valued functions nc(b) and c(b) were evaluated using a PARI/GP [8] script [9], and the 
separate sequences of their normalized numerators and shared denominators were listed in OEIS [9, 10, 
11]. The results for a few values of the base b are shown in the Table below. 

As a check, the densities were estimated, for all the selected bases, using a brute force count of numbers 
up to 10^9 satisfying the RTNC condition (for the used code, see the Appendix). These results are listed 
in the Table in the column “Estimated nc(b), were compared with the rational values computed from 
equations (6) and (7). In all cases, a perfect agreement was found up to at least 6 significant digits. 

Notice that the functions nc(b) and c(b), while converging to a limit for large b (to be discussed below), 
are not monotonous. 

The numerators of the rational-valued function s(n) were also registered on OEIS [12]. It is interesting to 
note that the corresponding denominators are already listed because they match those of the partial sums 
of the phi(n)/n series [13], where phi(n) is the Euler totient function. The corresponding numerators 
[14], however, are different. 
  

http://ebyte.it/library/Library.html
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Table 1. Column 1 defines the base b. Column 2 gives the exact rational value of nc(b) 
computed from equations (6, 7) and column 3 displays the same value in floating point 
notation. Column 4 shows the “brute-force” value of nc(b) estimated by counting all numbers 
having the RTNC property in the interval from 1 to 10^9. Finally, for completeness sake, the 
last column shows the exact (rational) value of the complementary c(b) = 1 – nc(b). 

 

Base b Exact nc(b) Exact nc(b) Estimated nc(b) Exact c(b) 

2 1/2 0.50 0.500000 … 1/2 

3 1/2 0.50 0.500000 … 1/2 

4 11/24 0.458333 0.458333 … 13/24 

5 7/15 0.466666 0.466666 … 8/15 

6 19/45 0.422222 0.422222 … 26/45 

7 16/35 0.457142 … 0.457142 … 19/35 

8 117/280 0.417857 … 0.417857 … 163/280 

9 269/630 0.426984 … 0.426984 … 361/630 

10 877/2100 0.417619 … 0.417619 … 1223/2100 

16 199663/480480 0.415549 … 0.415549 … 280817/480480 

256 See ref. [8,9] 0.393612 … 0.393612 … See ref. [8,10] 

 1 - 1/(2) 0.392072 … not applicable 1/(2) 

 

The limit value and an alternative interpretation 

What if we let b grow to infinity in equation (7)? Clearly, an expression like [(b-1)\(p1p2…pk)]/b has a 
limit which equals 1/(p1p2…pk). Consequently, 

lim b nc(b)  = k>0 (-)k-1  prime p1<p2<…<pk 1/(p1p2…pk)2  

  = 1 – [1+k>0 (-)k  prime p1<p2<…<pk 1/(p1p2…pk)2] 

  = 1 -  prime p (1 – 1/p2) 

  = 1 – 1/(2) = 1 – 6/2 = 0.392072 … (OEIS A229099),  (8) 

where (n) is the Riemann zeta function [15]. The above passages are relatively simple, provided one 
uses properly inclusion-exclusion principle and the Euler product theorem. In a somewhat different 
context, the procedure occurs also in reference [16]. 

Since c(b) = 1 – nc(b), equation (8) implies that 

 lim b c(b)  = 1/(2) = 6/2 = 0.607927 … (OEIS A059956),   (9) 

a result that is not unexpected. We have seen, in fact, that the RTC condition of equation (1) coincides 
with that of m\b being coprime to the last digit of m (Lemma 2). Since the value of n = m\b is unlimited, 
it is evident that for large values of b the density of numbers satisfying RTC must approach that of 
relatively coprime pairs among all pairs of nonnegative integers which, by Cesaro’s theorem [1, 17], is 
known to be 1/(2). This reflection leads to the following interpretation: 

Lemma 3: The value of c(b) is also the mean density of coprime pairs among all pairs of nonnegative 
integers such that one is unconstrained while the other is drawn randomly from the set {0, 1, 2, …, b-1}. 

The convergence to the limit, however, is very slow and, as already pointed out, somewhat erratic. 
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Appendix 

The numeric values reported here, as well as those registered in OEIS were computed using a PARI [8] 
with the following GP scripts. Note that the names of the functions were slightly adapted to match the 
author’s library conventions: 

A) The function s(b) of equation (6), here named S(b): 

S(b) = 1 + S_aux(b,1,1); 

This  calls the following auxiliary function S_aux which encodes the inclusion-exclusion process: 

S_aux(n,p0,inp) = 

/* ---------------------------------------------------------- 

This is an iterative loop used to evaluate the function 

s(b) of the referencehttp://dx.doi.org/0.3247/SL5Math14.005. 

p0 is the starting product of increasing prime numbers, which 

is to be extended by the next prime factor with index ipn. 

The actual evaluation of s(b) is ahieved by calling 

S(b) = 1+S_aux(b,1,1) 

---------------------------------------------------------- */ 

{ 

  my (t=0/1,tt=0/1,in=inp,pp); 

  while (1,pp = p0*prime(in);tt = n\pp; 

    if (tt==0,break,t += tt/pp - S_aux(n,pp,in++))); 

  return (t); 

} 

B) The functions nc(b) and c(b) of equations (7), here named RTnc(b) and RTc(b), respectively: 

RTnc(b) = S(b-1)/b; 

RTc(b) = 1 - RTnc(b); 

C) The mean densities of RTNC numbers for various b values were computed by calling: 

DensityNCond1(10^9,IsNotCoprimeToRTrunc,16) 

The DensityNCond1 function script is: 

DensityNCond1(nmax,condition,m,monit=0) = 

/* ---------------------------------------------------------- 

Estimates the density of naturals satisfying a test condition. 

The condition function must be of the form 

  BOOL cond(t_INT n,t_INT m), where m is a parameter. 

The argument nmax is the desired maximum value of n to test. 

Returns the ratio k/nmax, where k is the number n-values not 

exceeding nmax which satisfy the condition.  

Example: density of numbers n such that n is coprime to n\16: 

  >  DensityNCond1(10^7,IsCoprimeRTrunc,16).   

---------------------------------------------------------- */ 

{ 

  my (k=0,n=0); 

  while(1,n++;if(condition(n,m),k++; 

    if(monit && (k%1000==0),print(n," ",k," ",0.0+k/n)); 

    if(n==nmax,break))); 

  return(k/n); 

} 

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.005


 Stan’s Library, Volume V, Mathematics 

   6 
S. Sykora, On some number densities related to coprimes, DOI: 10.3247/SL5Math14.005 

 

 
 

It can be used to count all numbers in the interval 1 to nmax which satisfy a generic condition(n,m), 
with m being a parameter. In the present case, the condition was defined as 

IsNotCoprimeToRTrunc(n,b) = gcd(n,n\b)!=1; 
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